These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11969446)

  • 1. Cluster-approximation mean-field theory of a class of cellular automaton models.
    Zhang Bt BT; Liu Ch CH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):4939-44. PubMed ID: 11969446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the subsurface oxygen diffusion on the Ziff-Gulari-Barshad catalytic reaction model.
    Grandi BC; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036135. PubMed ID: 11909193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ziff-gulari-barshad model with random distribution of inert sites.
    Hoenicke GL; Figueiredo W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6216-23. PubMed ID: 11101952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal oscillations and clustering in the Ziff-Gulari-Barshad model with surface reconstruction.
    Provata A; Noussiou VK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066108. PubMed ID: 16486011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order moments at the critical point of the Ziff-Gulari-Barshad model.
    Leite VS; Hoenicke GL; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036104. PubMed ID: 11580391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic behavior of the Ziff-Gulari-Barshad model on fractal lattices: the influence of the order of ramification.
    Gao Z; Yang ZR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2741-4. PubMed ID: 11970078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of CO desorption and coadsorption with O on the phase diagram of a Ziff-Gulari-Barshad model for the catalytic oxidation of CO.
    Buendía GM; Machado E; Rikvold PA
    J Chem Phys; 2009 Nov; 131(18):184704. PubMed ID: 19916620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations of the critical properties of a Ziff-Gulari-Barshad model of catalytic CO oxidation with long-range reactivity.
    Chan CH; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012103. PubMed ID: 25679566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes.
    Kyriakopoulos C; Grossmann G; Wolf V; Bortolussi L
    Phys Rev E; 2018 Jan; 97(1-1):012301. PubMed ID: 29448315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal and applications of a method for the study of irreversible phase transitions.
    Loscar ES; Guisoni N; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051123. PubMed ID: 20364963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical properties of the Ziff, Gulari, and Barshad (ZGB) model with inert sites.
    Hoenicke GL; de Andrade MF; Figueiredo W
    J Chem Phys; 2014 Aug; 141(7):074709. PubMed ID: 25149808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ziff-Gulari-Barshad model with CO desorption: An Ising-like nonequilibrium critical point.
    Tomé T; Dickman R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1993 Feb; 47(2):948-952. PubMed ID: 9960090
    [No Abstract]   [Full Text] [Related]  

  • 13. Phase diagrams of the Ziff-Gulari-Barshad model on random networks.
    Vilela EB; Fernandes HA; Paranhos Costa FL; Gomes PF
    J Comput Chem; 2020 Aug; 41(22):1965-1972. PubMed ID: 32597515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage spreading in the Ziff-Gulari-Barshad model.
    Albano EV
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1994 Aug; 50(2):1129-1134. PubMed ID: 9962071
    [No Abstract]   [Full Text] [Related]  

  • 15. Heuristic derivation of continuum kinetic equations from microscopic dynamics.
    Leung KT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016102. PubMed ID: 11304309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular automaton models of driven diffusive Frenkel-Kontorova-type systems.
    Wang BH; Kwong YR; Hui PM; Hu B
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):149-58. PubMed ID: 11969745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of sexual and asexual conspecifics: a cellular automaton model.
    Carrillo C; Britton NF; Mogie M
    J Theor Biol; 2002 Aug; 217(3):275-85. PubMed ID: 12270274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.
    Cammi R
    J Chem Phys; 2009 Oct; 131(16):164104. PubMed ID: 19894924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pair approximation for lattice models with multiple interaction scales.
    Ellner SP
    J Theor Biol; 2001 Jun; 210(4):435-47. PubMed ID: 11403564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computation of nucleation at a nonequilibrium first-order phase transition using a rare-event algorithm.
    Adams DA; Ziff RM; Sander LM
    J Chem Phys; 2010 Nov; 133(17):174107. PubMed ID: 21054006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.