These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11969484)

  • 1. Universal behavior in the parametric evolution of chaotic saddles.
    Lai YC; Zyczkowski K; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5261-5. PubMed ID: 11969484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles.
    Dhamala M; Lai YC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximating chaotic saddles for delay differential equations.
    Taylor SR; Campbell SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046215. PubMed ID: 17500986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC; Macau EE; Rosa RR
    Chaos; 2004 Sep; 14(3):545-56. PubMed ID: 15446964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaotic saddles and interior crises in a dissipative nontwist system.
    Simile Baroni R; de Carvalho RE; Caldas IL; Viana RL; Morrison PJ
    Phys Rev E; 2023 Feb; 107(2-1):024216. PubMed ID: 36932624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of transient and intermittent dynamics in spatiotemporal chaotic systems.
    Rempel EL; Chian AC
    Phys Rev Lett; 2007 Jan; 98(1):014101. PubMed ID: 17358476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic saddles at the onset of intermittent spatiotemporal chaos.
    Rempel EL; Chian AC; Miranda RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056217. PubMed ID: 18233749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical explorations of R. M. Goodwin's business cycle model.
    Jakimowicz A
    Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doubly transient chaos: generic form of chaos in autonomous dissipative systems.
    Motter AE; Gruiz M; Károlyi G; Tél T
    Phys Rev Lett; 2013 Nov; 111(19):194101. PubMed ID: 24266475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold.
    Dronov V; Ott E
    Chaos; 2000 Jun; 10(2):291-298. PubMed ID: 12779384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase resetting effects for robust cycles between chaotic sets.
    Ashwin P; Field M; Rucklidge AM; Sturman R
    Chaos; 2003 Sep; 13(3):973-81. PubMed ID: 12946190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient chimera states emerging from dynamical trapping in chaotic saddles.
    Medeiros ES; Omel'chenko O; Feudel U
    Chaos; 2023 Sep; 33(9):. PubMed ID: 37729099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limit cycles and homoclinic networks in two-dimensional polynomial systems.
    Luo ACJ
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38412536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary homoclinic bifurcation theorems.
    Rom-Kedar V
    Chaos; 1995 Jun; 5(2):385-401. PubMed ID: 12780192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cycles homoclinic to chaotic sets; robustness and resonance.
    Ashwin P
    Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-parameter bifurcation study of the regularized long-wave equation.
    Podvigina O; Zheligovsky V; Rempel EL; Chian AC; Chertovskih R; Muñoz PR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032906. PubMed ID: 26465539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological invariants in the study of a chaotic food chain system.
    Duarte J; Januário C; Martins N
    Chaos; 2008 Jun; 18(2):023109. PubMed ID: 18601476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lagrangian chaotic saddles and objective vortices in solar plasmas.
    Chian AC; Silva SSA; Rempel EL; Rubio LRB; Gošić M; Kusano K; Park SH
    Phys Rev E; 2020 Dec; 102(6-1):060201. PubMed ID: 33466044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.