These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11969600)

  • 1. Rosenbluth chain cluster growth in the study of micelle self-assembly.
    Dalby T; Care CM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):6152-60. PubMed ID: 11969600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved rosenbluth monte carlo scheme for cluster counting and lattice animal enumeration.
    Care CM; Ettelaie R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):1397-404. PubMed ID: 11088600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained simulation of amphiphilic self-assembly.
    Michel DJ; Cleaver DJ
    J Chem Phys; 2007 Jan; 126(3):034506. PubMed ID: 17249883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stiffness on the micellization behavior of model H4T4 surfactant chains.
    Firetto V; Floriano MA; Panagiotopoulos AZ
    Langmuir; 2006 Jul; 22(15):6514-22. PubMed ID: 16830992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical thermodynamics of amphiphile chains in micelles.
    Ben-Shaul A; Szleifer I; Gelbart WM
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4601-5. PubMed ID: 16593492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wang-Landau study of a lattice model for lipid bilayer self-assembly.
    Gai L; Maerzke K; Cummings PT; McCabe C
    J Chem Phys; 2012 Oct; 137(14):144901. PubMed ID: 23061859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cluster diversity and entropy on the percolation model: the lattice animal identification algorithm.
    Tsang IJ; Tsang IR; Dyck DV
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6004-14. PubMed ID: 11101928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Percolation in polymer-solvent systems: a Monte Carlo study.
    Adamczyk P; Polanowski P; Sikorski A
    J Chem Phys; 2009 Dec; 131(23):234901. PubMed ID: 20025342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of a lattice model of two-headed linear amphiphiles: influence of amphiphile asymmetry.
    Jackson DR; Mohareb A; MacNeil J; Razul MS; Marangoni DG; Poole PH
    J Chem Phys; 2011 May; 134(20):204503. PubMed ID: 21639452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations of amphiphilic nanoparticle self-assembly.
    Davis JR; Panagiotopoulos AZ
    J Chem Phys; 2008 Nov; 129(19):194706. PubMed ID: 19026080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal and antibacterial properties of novel triple-headed, double-tailed amphiphiles: exploring structure-activity relationships and synergistic mixtures.
    Marafino JN; Gallagher TM; Barragan J; Volkers BL; LaDow JE; Bonifer K; Fitzgerald G; Floyd JL; McKenna K; Minahan NT; Walsh B; Seifert K; Caran KL
    Bioorg Med Chem; 2015 Jul; 23(13):3566-73. PubMed ID: 25936261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of model short triblock amphiphiles in dilute solution.
    Zaldivar G; Samad MB; Conda-Sheridan M; Tagliazucchi M
    Soft Matter; 2018 Apr; 14(16):3171-3181. PubMed ID: 29645060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulations of lattice models for single polymer systems.
    Hsu HP
    J Chem Phys; 2014 Oct; 141(16):164903. PubMed ID: 25362337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the inner structure and topology of clusters in two-component lipid bilayers. Comparison of monomer and dimer Ising models.
    Sugár IP
    J Phys Chem B; 2008 Sep; 112(37):11631-42. PubMed ID: 18729402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interior segment regrowth configurational-bias algorithm for the efficient sampling and fast relaxation of coarse-grained polyethylene and polyoxyethylene melts on a high coordination lattice.
    Rane SS; Mattice WL
    J Chem Phys; 2005 Jun; 122(23):234913. PubMed ID: 16008493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulations for amphiphilic aggregation near a water phase transition.
    Heinzelmann G; Figueiredo W; Girardi M
    J Chem Phys; 2009 Oct; 131(14):144901. PubMed ID: 19831463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional percolation and cluster structure of the random packing of binary disks.
    He D; Ekere NN; Cai L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061304. PubMed ID: 12188713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative study of fluctuation effects by fast lattice Monte Carlo simulations: compression of grafted homopolymers.
    Zhang P; Wang Q
    J Chem Phys; 2014 Jan; 140(4):044904. PubMed ID: 25669580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting Aggregation Free Energies of Mixed Clusters from Simulations of Small Systems: Application to Ionic Surfactant Micelles.
    Zhang X; Patel LA; Beckwith O; Schneider R; Weeden CJ; Kindt JT
    J Chem Theory Comput; 2017 Nov; 13(11):5195-5206. PubMed ID: 28942641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.