These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 11969603)

  • 1. Generalized Landauer equation: absorption-controlled diffusion processes.
    Godoy S; García-Colín LS; Micenmacher V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):6180-3. PubMed ID: 11969603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landauer equation in three-dimensional amorphous materials.
    Godoy S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7769-72. PubMed ID: 11138051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of absorption and reflection in solid-state random laser media.
    Noginov MA; Bahoura M; Noginova N; Drachev VP
    Appl Opt; 2004 Jul; 43(21):4237-43. PubMed ID: 15291070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on the modified Beer-Lambert law for scattering media.
    Sassaroli A; Fantini S
    Phys Med Biol; 2004 Jul; 49(14):N255-7. PubMed ID: 15357206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach.
    Trigger SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046403. PubMed ID: 12786497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of heterogeneities embedded within a turbid slab media using time- and frequency-domain methods: application to the mammography.
    Piron V; L'Huillier JP
    Lasers Med Sci; 2006 Jul; 21(2):67-73. PubMed ID: 16596457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of optical parameters of polystyrene spheres in dense aqueous suspensions.
    Xia H; Miao C; Cheng J; Tao S; Pang R; Wu X
    Appl Opt; 2012 Jun; 51(16):3263-8. PubMed ID: 22695559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-form solution of the steady-state photon diffusion equation in the presence of absorbing inclusions.
    Esposito R; Martelli F; De Nicola S
    Opt Lett; 2014 Feb; 39(4):826-9. PubMed ID: 24562217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path length enhancement in disordered media for increased absorption.
    Mupparapu R; Vynck K; Svensson T; Burresi M; Wiersma DS
    Opt Express; 2015 Nov; 23(24):A1472-84. PubMed ID: 26698795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forward solvers for photon migration in the presence of highly and totally absorbing objects embedded inside diffusive media.
    Sassaroli A; Pifferi A; Contini D; Torricelli A; Spinelli L; Wabnitz H; Di Ninni P; Zaccanti G; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2014 Mar; 31(3):460-9. PubMed ID: 24690640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction to the Beer-Lambert-Bouguer law for optical absorption.
    Abitan H; Bohr H; Buchhave P
    Appl Opt; 2008 Oct; 47(29):5354-7. PubMed ID: 18846176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integral light-scattering and absorption characteristics of large, nonspherical particles.
    Kokhanovsky AA; Macke A
    Appl Opt; 1997 Nov; 36(33):8785-90. PubMed ID: 18264428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time integrated spectroscopy of turbid media based on the microscopic beer-lambert law: application to small-size phantoms having different boundary conditions.
    Zhang H; Urakami T; Tsuchiya Y; Lu Z; Hiruma T
    J Biomed Opt; 1999 Jan; 4(1):183-90. PubMed ID: 23015184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium.
    Sun W; Loeb NG; Fu Q
    Appl Opt; 2002 Sep; 41(27):5728-43. PubMed ID: 12269573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping of diffusive particles by rough absorbing surfaces: boundary smoothing approach.
    Skvortsov A; Walker A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023202. PubMed ID: 25215838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements.
    Madsen SJ; Wilson BC; Patterson MS; Park YD; Jacques SL; Hefetz Y
    Appl Opt; 1992 Jun; 31(18):3509-17. PubMed ID: 20725319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for moisture measurement in porous media based on epithermal neutron scattering.
    El Abd A
    Appl Radiat Isot; 2015 Nov; 105():150-157. PubMed ID: 26298060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of error in spectrophotometry of scattering media using polarization techniques.
    Stockford IM; Lu B; Crowe JA; Morgan SP; Morris DE
    Appl Spectrosc; 2007 Dec; 61(12):1379-89. PubMed ID: 18198032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative point source photoacoustic inversion formulas for scattering and absorbing media.
    Ripoll J; Ntziachristos V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031912. PubMed ID: 15903464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional photon migration through voidlike regions and channels.
    Aydin ED
    Appl Opt; 2007 Dec; 46(34):8272-7. PubMed ID: 18059668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.