These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11969675)

  • 1. Kinetic model for a step edge in epitaxial growth.
    Caflisch RE; E W; Gyure MF; Merriman B; Ratsch C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6879-87. PubMed ID: 11969675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kink-formation kinetics and submonolayer density of magic two-dimensional islands in molecular beam epitaxy.
    Filimonov S; Hervieu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051603. PubMed ID: 20364991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field method for epitaxial kinetics on surfaces.
    Posthuma de Boer J; Ford IJ; Kantorovich L; Vvedensky DD
    J Chem Phys; 2018 Nov; 149(19):194107. PubMed ID: 30466263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An examination of scaling behavior in unstable epitaxial mound growth via kinetic Monte Carlo simulations.
    Schneider JP; Margetis D; Gibou F; Ratsch C
    J Phys Condens Matter; 2019 Sep; 31(36):365301. PubMed ID: 31071698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides.
    Nie Y; Liang C; Cha PR; Colombo L; Wallace RM; Cho K
    Sci Rep; 2017 Jun; 7(1):2977. PubMed ID: 28592802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STERIC HINDRANCE OF CRYSTAL GROWTH: NONLINEAR STEP FLOW IN 1+1 DIMENSIONS.
    Schneider JP; Patrone PN; Margetis D
    Physica D; 2018; 16(1):. PubMed ID: 32165775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Island-dynamics model for mound formation: effect of a step-edge barrier.
    Papac J; Margetis D; Gibou F; Ratsch C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022404. PubMed ID: 25215739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instability and wavelength selection during step flow growth of metal surfaces vicinal to fcc(001).
    Rusanen M; Koponen IT; Heinonen J; Ala-Nissila T
    Phys Rev Lett; 2001 Jun; 86(23):5317-20. PubMed ID: 11384487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic model for step flow growth of [100] steps.
    Balykov L; Voigt A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):022601. PubMed ID: 16196616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Simulations of Graphene Growth: From Kinetics to Mechanism.
    Qiu Z; Li P; Li Z; Yang J
    Acc Chem Res; 2018 Mar; 51(3):728-735. PubMed ID: 29493220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic Monte Carlo simulations of surface growth during plasma deposition of silicon thin films.
    Pandey SC; Singh T; Maroudas D
    J Chem Phys; 2009 Jul; 131(3):034503. PubMed ID: 19624205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed modeling of the epitaxial growth of GaAs nanowires.
    De Jong E; LaPierre RR; Wen JZ
    Nanotechnology; 2010 Jan; 21(4):045602. PubMed ID: 20009168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of tensile strain on Ag(111) epitaxial growth by kinetic Monte Carlo simulations.
    Matsunaka D; Shibutani Y
    J Phys Condens Matter; 2011 Jul; 23(26):265008. PubMed ID: 21673405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An all-atom kinetic Monte Carlo model for chemical vapor deposition growth of graphene on Cu(1 1 1) substrate.
    Chen S; Gao J; Srinivasan BM; Zhang G; Sorkin V; Hariharaputran R; Zhang YW
    J Phys Condens Matter; 2020 Apr; 32(15):155401. PubMed ID: 31846953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and velocity of field-driven solid-on-solid interfaces: analytic approximations and numerical results.
    Rikvold PA; Kolesik M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066116. PubMed ID: 12513356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces.
    Xu D; Zapol P; Stephenson GB; Thompson C
    J Chem Phys; 2017 Apr; 146(14):144702. PubMed ID: 28411601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic Monte Carlo study of submonolayer heteroepitaxial growth comparing Cu/Ni and Pt/Ni on Ni(100).
    Haug K; Lin M; Lonergan NJ
    J Phys Chem B; 2005 Aug; 109(30):14557-66. PubMed ID: 16852835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global reaction route mapping-based kinetic Monte Carlo algorithm.
    Mitchell I; Irle S; Page AJ
    J Chem Phys; 2016 Jul; 145(2):024105. PubMed ID: 27421395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-dimensional model of interacting-step fluctuations on vicinal surfaces: analytical formulas and kinetic Monte Carlo simulations.
    Patrone PN; Einstein TL; Margetis D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061601. PubMed ID: 21230676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of Al and Ga Droplet Nucleation during Droplet Epitaxy or Droplet Etching.
    Heyn C; Feddersen S
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33673053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.