These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 11969723)

  • 1. Efficiency of Brownian heat engines.
    Derényi I; Astumian RD
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):R6219-22. PubMed ID: 11969723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible quantum brownian heat engines for electrons.
    Humphrey TE; Newbury R; Taylor RP; Linke H
    Phys Rev Lett; 2002 Sep; 89(11):116801. PubMed ID: 12225160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast-forward approach to stochastic heat engine.
    Nakamura K; Matrasulov J; Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012129. PubMed ID: 32794934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entropic anomaly and maximal efficiency of microscopic heat engines.
    Bo S; Celani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):050102. PubMed ID: 23767467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle.
    Chen YH; Chen JF; Fei Z; Quan HT
    Phys Rev E; 2022 Aug; 106(2-1):024105. PubMed ID: 36109948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Particle Representation of Heat Conduction Described within the Scope of the Second Law.
    Jesudason CG
    PLoS One; 2016; 11(1):e0145026. PubMed ID: 26760507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Onsager symmetries in adiabatically driven linear irreversible heat engines.
    Izumida Y
    Phys Rev E; 2021 May; 103(5):L050101. PubMed ID: 34134349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Carnot efficiency in a finite-power Brownian Carnot cycle with arbitrary temperature difference.
    Miura K; Izumida Y; Okuda K
    Phys Rev E; 2022 Mar; 105(3-1):034102. PubMed ID: 35428092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal finite-time Brownian Carnot engine.
    Frim AG; DeWeese MR
    Phys Rev E; 2022 May; 105(5):L052103. PubMed ID: 35706186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brownian Carnot engine.
    Martínez IA; Roldán É; Dinis L; Petrov D; Parrondo JMR; Rica RA
    Nat Phys; 2016 Jan; 12(1):67-70. PubMed ID: 27330541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unattainability of carnot efficiency in the brownian heat engine.
    Hondou T; Sekimoto K
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6021-5. PubMed ID: 11101930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle.
    Kennedy IR; Hodzic M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adiabatic processes realized with a trapped Brownian particle.
    Martínez IA; Roldán É; Dinis L; Petrov D; Rica RA
    Phys Rev Lett; 2015 Mar; 114(12):120601. PubMed ID: 25860731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underdamped active Brownian heat engine.
    Holubec V; Marathe R
    Phys Rev E; 2020 Dec; 102(6-1):060101. PubMed ID: 33466083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal performance of periodically driven, stochastic heat engines under limited control.
    Bauer M; Brandner K; Seifert U
    Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.