These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 11969723)

  • 21. Realization of a Brownian engine to study transport phenomena: a semiclassical approach.
    Ghosh P; Shit A; Chattopadhyay S; Chaudhuri JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061112. PubMed ID: 20866383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum dynamical framework for Brownian heat engines.
    Agarwal GS; Chaturvedi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental realization of a minimal microscopic heat engine.
    Argun A; Soni J; Dabelow L; Bo S; Pesce G; Eichhorn R; Volpe G
    Phys Rev E; 2017 Nov; 96(5-1):052106. PubMed ID: 29347639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.
    Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colloidal heat engines: a review.
    Martínez IA; Roldán É; Dinis L; Rica RA
    Soft Matter; 2016 Dec; 13(1):22-36. PubMed ID: 27477856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficiency of a microscopic heat engine subjected to stochastic resetting.
    Lahiri S; Gupta S
    Phys Rev E; 2024 Jan; 109(1-1):014129. PubMed ID: 38366425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carnot efficiency is reachable in an irreversible process.
    Lee JS; Park H
    Sci Rep; 2017 Sep; 7(1):10725. PubMed ID: 28878219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiency Bounds for Minimally Nonlinear Irreversible Heat Engines with Broken Time-Reversal Symmetry.
    Liu Q; Li W; Zhang M; He J; Wang J
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Entropic bounds on currents in Langevin systems.
    Dechant A; Sasa SI
    Phys Rev E; 2018 Jun; 97(6-1):062101. PubMed ID: 30011501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The power of a critical heat engine.
    Campisi M; Fazio R
    Nat Commun; 2016 Jun; 7():11895. PubMed ID: 27320127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine.
    Chatterjee S; Koner A; Chatterjee S; Kumar C
    Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum heat engine in the relativistic limit: the case of a Dirac particle.
    Muñoz E; Peña FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061108. PubMed ID: 23367894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficiency at maximum power of thermochemical engines with near-independent particles.
    Luo X; Liu N; Qiu T
    Phys Rev E; 2016 Mar; 93(3):032125. PubMed ID: 27078310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inertial effects in Büttiker-Landauer motor and refrigerator at the overdamped limit.
    Benjamin R; Kawai R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051132. PubMed ID: 18643051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attainability of Carnot efficiency with autonomous engines.
    Shiraishi N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):050101. PubMed ID: 26651627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic feature of a Brownian heat engine operating between two heat baths.
    Asfaw M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012143. PubMed ID: 24580208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines.
    Pietzonka P; Seifert U
    Phys Rev Lett; 2018 May; 120(19):190602. PubMed ID: 29799237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.