These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 11969750)
1. Analytic approach to the critical density in cellular automata for traffic flow. Gerwinski M; Krug J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):188-96. PubMed ID: 11969750 [TBL] [Abstract][Full Text] [Related]
2. Stochastic boundary conditions in the deterministic Nagel-Schreckenberg traffic model. Cheybani S; Kertész J; Schreckenberg M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016107. PubMed ID: 11304314 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow. Bette HM; Habel L; Emig T; Schreckenberg M Phys Rev E; 2017 Jan; 95(1-1):012311. PubMed ID: 28208435 [TBL] [Abstract][Full Text] [Related]
4. Cellular-automaton model with velocity adaptation in the framework of Kerner's three-phase traffic theory. Gao K; Jiang R; Hu SX; Wang BH; Wu QS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026105. PubMed ID: 17930102 [TBL] [Abstract][Full Text] [Related]
5. Noise properties in the Nagel-Schreckenberg traffic model. Chen S; Huang D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036110. PubMed ID: 11308712 [TBL] [Abstract][Full Text] [Related]
6. Finite-size effects in the Nagel-Schreckenberg traffic model. Balouchi A; Browne DA Phys Rev E; 2016 May; 93(5):052302. PubMed ID: 27300905 [TBL] [Abstract][Full Text] [Related]
7. Cellular automaton traffic flow model between the Fukui-Ishibashi and Nagel-Schreckenberg models. Wang L; Wang BH; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056117. PubMed ID: 11414971 [TBL] [Abstract][Full Text] [Related]
8. Traffic model with an absorbing-state phase transition. Iannini ML; Dickman R Phys Rev E; 2017 Feb; 95(2-1):022106. PubMed ID: 28297966 [TBL] [Abstract][Full Text] [Related]
9. Effects of quenched randomness induced by car accidents on traffic flow in a cellular automata model. Yang XQ; Ma YQ; Zhao YM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046121. PubMed ID: 15600474 [TBL] [Abstract][Full Text] [Related]
10. Velocity statistics of the Nagel-Schreckenberg model. Bain N; Emig T; Ulm FJ; Schreckenberg M Phys Rev E; 2016 Feb; 93(2):022305. PubMed ID: 26986350 [TBL] [Abstract][Full Text] [Related]
11. Nondeterministic Nagel-Schreckenberg traffic model with open boundary conditions. Cheybani S; Kertész J; Schreckenberg M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016108. PubMed ID: 11304315 [TBL] [Abstract][Full Text] [Related]
12. Information content in the Nagel-Schreckenberg cellular automaton traffic model. Blue M; Bush BW Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):047103. PubMed ID: 12786533 [TBL] [Abstract][Full Text] [Related]
13. Renormalization-group study of the Nagel-Schreckenberg model. Teoh HK; Yong EH Phys Rev E; 2018 Mar; 97(3-1):032314. PubMed ID: 29776154 [TBL] [Abstract][Full Text] [Related]
14. Effects of changing orders in the update rules on traffic flow. Xue Y; Dong LY; Li L; Dai SQ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026123. PubMed ID: 15783394 [TBL] [Abstract][Full Text] [Related]
15. Exactly solvable cellular automaton traffic jam model. Kearney MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061115. PubMed ID: 17280046 [TBL] [Abstract][Full Text] [Related]
16. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow. Kerner BS; Klenov SL; Schreckenberg M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046110. PubMed ID: 22181230 [TBL] [Abstract][Full Text] [Related]
17. Synchronized flow in oversaturated city traffic. Kerner BS; Klenov SL; Hermanns G; Hemmerle P; Rehborn H; Schreckenberg M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):054801. PubMed ID: 24329392 [TBL] [Abstract][Full Text] [Related]
18. Statistical physics of synchronized traffic flow: Spatiotemporal competition between S→F and S→J instabilities. Kerner BS Phys Rev E; 2019 Jul; 100(1-1):012303. PubMed ID: 31499898 [TBL] [Abstract][Full Text] [Related]
19. Analytical results of the Nagel-Schreckenberg model with stochastic open boundary conditions. Jia N; Ma S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041105. PubMed ID: 19905271 [TBL] [Abstract][Full Text] [Related]
20. Reaction-diffusion models describing a two-lane traffic flow. Fouladvand ME Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):5940-7. PubMed ID: 11101920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]