These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 11969775)
1. Theory of oscillations in average crisis-induced transient lifetimes. Kacperski K; Hołyst JA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):403-7. PubMed ID: 11969775 [TBL] [Abstract][Full Text] [Related]
2. Stochastic multiresonance in a chaotic map with fractal basins of attraction. Matyjaśkiewicz S; Krawiecki A; Holyst JA; Kacperski K; Ebeling W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026215. PubMed ID: 11308566 [TBL] [Abstract][Full Text] [Related]
3. Analyses of transient chaotic time series. Dhamala M; Lai YC; Kostelich EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056207. PubMed ID: 11736054 [TBL] [Abstract][Full Text] [Related]
4. Overlapping of two truncated crisis scenarios: generator of peaks in mean lifetimes of chaotic transients. Paar V; Pavin N Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036222. PubMed ID: 14524883 [TBL] [Abstract][Full Text] [Related]
5. Detecting unstable periodic orbits from transient chaotic time series. Dhamala M; Lai YC; Kostelich EJ Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6485-9. PubMed ID: 11088327 [TBL] [Abstract][Full Text] [Related]
6. Network analysis of chaotic systems through unstable periodic orbits. Kobayashi MU; Saiki Y Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482 [TBL] [Abstract][Full Text] [Related]
7. Cusp-scaling behavior in fractal dimension of chaotic scattering. Motter AE; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):065201. PubMed ID: 12188774 [TBL] [Abstract][Full Text] [Related]
8. Crisis induced by an escape from a fat strange set. He Y; Jiang YM; Shen Y; He DR Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056213. PubMed ID: 15600734 [TBL] [Abstract][Full Text] [Related]
9. Noisefree stochastic multiresonance near chaotic crises. Krawiecki A; Matyjaśkiewicz S; Kacperski K; Hołyst JA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041104. PubMed ID: 11690007 [TBL] [Abstract][Full Text] [Related]
10. Spatial log-periodic oscillations of first-passage observables in fractals. Akkermans E; Benichou O; Dunne GV; Teplyaev A; Voituriez R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061125. PubMed ID: 23367911 [TBL] [Abstract][Full Text] [Related]
11. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method. Liu X; Hong L; Jiang J Chaos; 2016 Aug; 26(8):084304. PubMed ID: 27586621 [TBL] [Abstract][Full Text] [Related]
12. Approximating chaotic saddles for delay differential equations. Taylor SR; Campbell SA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046215. PubMed ID: 17500986 [TBL] [Abstract][Full Text] [Related]
13. Topological scaling and gap filling at crisis. Szabo KG; Lai YC; Tel T; Grebogi C Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):5019-32. PubMed ID: 11031545 [TBL] [Abstract][Full Text] [Related]
14. Crisis-induced intermittency in two coupled chaotic maps: towards understanding chaotic itinerancy. Tanaka G; Sanjuán MA; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016219. PubMed ID: 15697710 [TBL] [Abstract][Full Text] [Related]
15. Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model. Gritsun A Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120336. PubMed ID: 23588051 [TBL] [Abstract][Full Text] [Related]
16. Periodic-orbit analysis and scaling laws of intermingled basins of attraction in an ecological dynamical system. Pereira RF; Camargo S; de S Pinto SE; Lopes SR; Viana RL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056214. PubMed ID: 19113207 [TBL] [Abstract][Full Text] [Related]
17. Wada basins and chaotic invariant sets in the Hénon-Heiles system. Aguirre J; Vallejo JC; Sanjuán MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066208. PubMed ID: 11736269 [TBL] [Abstract][Full Text] [Related]
18. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related]
19. Geometric determination of classical actions of heteroclinic and unstable periodic orbits. Li J; Tomsovic S Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367 [TBL] [Abstract][Full Text] [Related]
20. Phase synchronization of chaotic oscillations in terms of periodic orbits. Pikovsky A; Zaks M; Rosenblum M; Osipov G; Kurths J Chaos; 1997 Dec; 7(4):680-687. PubMed ID: 12779693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]