BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11969784)

  • 1. Rayleigh-Bénard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme in the incompressible limit.
    Xu K; Lui SH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):464-70. PubMed ID: 11969784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit.
    Shi Y; Zhao TS; Guo ZL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066310. PubMed ID: 15697505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possibility of constructing a multispeed Bhatnagar-Gross-Krook thermal model of the lattice Boltzmann method.
    Watari M; Tsutahara M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016703. PubMed ID: 15324200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.
    Yang X; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of inertia in Rayleigh-Bénard convection.
    Breuer M; Wessling S; Schmalzl J; Hansen U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026302. PubMed ID: 14995554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann simulation of free surface flow impact on a structure.
    Dinesh Kumar E; Sannasiraj SA; Sundar V
    Phys Rev E; 2019 Feb; 99(2-1):023308. PubMed ID: 30934261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case.
    Guo Z; Xu K; Wang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033305. PubMed ID: 24125383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional solutions of the Boltzmann equation: heat transport at long mean free paths.
    Christlieb AJ; Hitchon WN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056708. PubMed ID: 12059751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on "Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method".
    Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):048301; discussion 048302. PubMed ID: 22181320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bounds on heat flux for Rayleigh-Bénard convection between Navier-slip fixed-temperature boundaries.
    Drivas TD; Nguyen HQ; Nobili C
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210025. PubMed ID: 35465719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of homogeneous condensation of small polyatomic systems in high pressure supersonic nozzle flows using Bhatnagar-Gross-Krook model.
    Kumar R; Levin DA
    J Chem Phys; 2011 Mar; 134(12):124519. PubMed ID: 21456688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exponential Bhatnagar-Gross-Krook integrator for multiscale particle-based kinetic simulations.
    Pfeiffer M; Garmirian F; Gorji MH
    Phys Rev E; 2022 Aug; 106(2-2):025303. PubMed ID: 36109928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-Lagrangian implicit Bhatnagar-Gross-Krook collision model for the finite-volume discrete Boltzmann method.
    Chen L; Succi S; Cai X; Schaefer L
    Phys Rev E; 2020 Jun; 101(6-1):063301. PubMed ID: 32688570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann method for incompressible flows with large pressure gradients.
    Shi Y; Zhao TS; Guo ZL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026704. PubMed ID: 16605480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample.
    Stevens RJ; Zhou Q; Grossmann S; Verzicco R; Xia KQ; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):027301. PubMed ID: 22463362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.
    Asinari P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056701. PubMed ID: 20365090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Boltzmann method coupled with the Oldroyd-B constitutive model for a viscoelastic fluid.
    Su J; Ouyang J; Wang X; Yang B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053304. PubMed ID: 24329376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filter-matrix lattice Boltzmann model for incompressible thermal flows.
    Zhuo C; Zhong C; Cao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046703. PubMed ID: 22680602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow.
    McCracken ME; Abraham J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036701. PubMed ID: 15903627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force.
    Aoki K; Takata S; Nakanishi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026315. PubMed ID: 11863661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.