These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11969784)

  • 21. Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit.
    Bisi M; Groppi M; Spiga G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036327. PubMed ID: 20365874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of the kinetic model equations.
    Liu S; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033306. PubMed ID: 24730966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quasiequilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability.
    Asinari P; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016702. PubMed ID: 20365497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inelastic collisional effect on a dilute granular shock layer with a heated wall.
    Yano R; Suzuki K
    Eur Phys J E Soft Matter; 2011 Mar; 34(3):31. PubMed ID: 21437794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-scale study of condensation in water jets using ellipsoidal-statistical Bhatnagar-Gross-Krook and molecular dynamics modeling.
    Li Z; Borner A; Levin DA
    J Chem Phys; 2014 Jun; 140(22):224501. PubMed ID: 24929401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries.
    Whitehead JP; Doering CR
    Phys Rev Lett; 2011 Jun; 106(24):244501. PubMed ID: 21770573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exact Results for Non-Newtonian Transport Properties in Sheared Granular Suspensions: Inelastic Maxwell Models and BGK-Type Kinetic Model.
    Gómez González R; Garzó V
    Entropy (Basel); 2024 Mar; 26(3):. PubMed ID: 38539776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Bénard convection.
    Lakkaraju R; Stevens RJ; Verzicco R; Grossmann S; Prosperetti A; Sun C; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056315. PubMed ID: 23214884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Boundary layer analysis in turbulent Rayleigh-Bénard convection in air: experiment versus simulation.
    Li L; Shi N; du Puits R; Resagk C; Schumacher J; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026315. PubMed ID: 23005862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lattice-Boltzmann model based on field mediators for immiscible fluids.
    Santos LO; Facin PC; Philippi PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056302. PubMed ID: 14682879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of viscous boundary layers in turbulent Rayleigh-Bénard convection.
    du Puits R; Resagk C; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036318. PubMed ID: 19905223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal boundary layer equation for turbulent Rayleigh-Bénard convection.
    Shishkina O; Horn S; Wagner S; Ching ES
    Phys Rev Lett; 2015 Mar; 114(11):114302. PubMed ID: 25839274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of aspect ratio on vortex distribution and heat transfer in rotating Rayleigh-Bénard convection.
    Stevens RJ; Overkamp J; Lohse D; Clercx HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056313. PubMed ID: 22181504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Bénard convection.
    Wen B; Chini GP; Kerswell RR; Doering CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043012. PubMed ID: 26565337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.
    Zhong JQ; Stevens RJ; Clercx HJ; Verzicco R; Lohse D; Ahlers G
    Phys Rev Lett; 2009 Jan; 102(4):044502. PubMed ID: 19257426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reply to "Comment on 'Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations'".
    Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):048701. PubMed ID: 23214711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uniformly accurate machine learning-based hydrodynamic models for kinetic equations.
    Han J; Ma C; Ma Z; E W
    Proc Natl Acad Sci U S A; 2019 Oct; 116(44):21983-21991. PubMed ID: 31619568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Turbulence in rotating Rayleigh-Bénard convection in low-Prandtl-number fluids.
    Pharasi HK; Kannan R; Kumar K; Bhattacharjee JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):047301. PubMed ID: 22181319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number.
    Ye W; Zhang W; He XT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):057401. PubMed ID: 12059764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection.
    Zhang Y; Huang YX; Jiang N; Liu YL; Lu ZM; Qiu X; Zhou Q
    Phys Rev E; 2017 Aug; 96(2-1):023105. PubMed ID: 28950509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.