These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11969832)

  • 1. Self-consistent axial modeling of surface-wave-produced discharges at low and intermediate pressures.
    Petrova T; Benova E; Petrov G; Zhelyazkov I
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):875-86. PubMed ID: 11969832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of atmospheric-pressure plasma columns sustained by surface waves.
    Kabouzi Y; Graves DB; Castaños-Martínez E; Moisan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016402. PubMed ID: 17358263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of surface-wave discharges with cylindrical symmetry.
    Alves LL; Letout S; Boisse-Laporte C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016403. PubMed ID: 19257144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radial structure of the constricted positive column: Modeling and experiment.
    Golubovskii Y; Kalanov D; Maiorov V
    Phys Rev E; 2017 Aug; 96(2-1):023206. PubMed ID: 28950621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic model of ionization waves in a positive column at intermediate pressures in inert gases.
    Golubovskii YB; Maiorov VA; Nekutchaev VO; Behnke J; Behnke JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036409. PubMed ID: 11308777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure.
    Ridenti MA; de Amorim J; Dal Pino A; Guerra V; Petrov G
    Phys Rev E; 2018 Jan; 97(1-1):013201. PubMed ID: 29448313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge.
    Kaganovich I; Misina M; Berezhnoi SV; Gijbels R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1875-89. PubMed ID: 11046473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic simulation model of magnetron discharges.
    Porokhova IA; Golubovskii YB; Bretagne J; Tichy M; Behnke JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056408. PubMed ID: 11415020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of excited atoms in decaying low-pressure argon plasma.
    Gorchakov S; Loffhagen D; Uhrlandt D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066401. PubMed ID: 17280153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially averaged model of complex-plasma discharge with self-consistent electron energy distribution.
    Denysenko I; Yu MY; Ostrikov K; Smolyakov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046403. PubMed ID: 15600526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dust particle radial confinement in a dc glow discharge.
    Sukhinin GI; Fedoseev AV; Antipov SN; Petrov OF; Fortov VE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013101. PubMed ID: 23410440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-distribution-function cutoff mechanism in a low-pressure afterglow plasma.
    Arslanbekov RR; Kudryavtsev AA; Tsendin LD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016401. PubMed ID: 11461404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of dust-particle concentration on gas-discharge plasma.
    Sukhinin GI; Fedoseev AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016402. PubMed ID: 20365480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas heating in low-pressure microwave argon discharges.
    Palmero A; Cotrino J; Lao C; González-Elipe AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066401. PubMed ID: 12513406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of microwave-induced plasma in argon at atmospheric pressure.
    Baeva M; Bösel A; Ehlbeck J; Loffhagen D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056404. PubMed ID: 23004876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical model for the radio-frequency sheath.
    Czarnetzki U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063101. PubMed ID: 24483571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity boundary condition at solid walls in rarefied gas calculations.
    Lockerby DA; Reese JM; Emerson DR; Barber RW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):017303. PubMed ID: 15324210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionization waves in low-current dc discharges in noble gases obtained with a hybrid kinetic-fluid model.
    Kolobov VI; Arslanbekov RR
    Phys Rev E; 2022 Dec; 106(6-2):065206. PubMed ID: 36671172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction.
    Castaños Martinez E; Kabouzi Y; Makasheva K; Moisan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066405. PubMed ID: 15697512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization.
    Niu XD; Hyodo SA; Munekata T; Suga K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036711. PubMed ID: 17930365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.