These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 11969857)
1. Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models. Bagarinao E; Pakdaman K; Nomura T; Sato S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):1073-6. PubMed ID: 11969857 [TBL] [Abstract][Full Text] [Related]
2. Reconstructing bifurcation diagrams of dynamical systems using measured time series. Bagarinao E; Pakdaman K; Nomura T; Sato S Methods Inf Med; 2000 Jun; 39(2):146-9. PubMed ID: 10892250 [TBL] [Abstract][Full Text] [Related]
3. Reconstructing bifurcation diagrams only from time-series data generated by electronic circuits in discrete-time dynamical systems. Itoh Y; Uenohara S; Adachi M; Morie T; Aihara K Chaos; 2020 Jan; 30(1):013128. PubMed ID: 32013489 [TBL] [Abstract][Full Text] [Related]
4. Reconstructing bifurcation diagrams of chaotic circuits with reservoir computing. Luo H; Du Y; Fan H; Wang X; Guo J; Wang X Phys Rev E; 2024 Feb; 109(2-1):024210. PubMed ID: 38491568 [TBL] [Abstract][Full Text] [Related]
5. Bifurcation diagrams in estimated parameter space using a pruned extreme learning machine. Itoh Y; Adachi M Phys Rev E; 2018 Jul; 98(1-1):013301. PubMed ID: 30110849 [TBL] [Abstract][Full Text] [Related]
6. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques. Xu D; Lu F Chaos; 2006 Dec; 16(4):043109. PubMed ID: 17199387 [TBL] [Abstract][Full Text] [Related]
12. A simple method to analyze the super-harmonic and ultra-harmonic behavior of the acoustically excited bubble oscillator. Sojahrood AJ; Wegierak D; Haghi H; Karshfian R; Kolios MC Ultrason Sonochem; 2019 Jun; 54():99-109. PubMed ID: 30827907 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality. Yang G; Wang L; Wang X Sci Rep; 2017 Jun; 7(1):2991. PubMed ID: 28592807 [TBL] [Abstract][Full Text] [Related]
14. Optimized brute-force algorithms for the bifurcation analysis of a binary neural network model. Fasoli D; Panzeri S Phys Rev E; 2019 Jan; 99(1-1):012316. PubMed ID: 30780305 [TBL] [Abstract][Full Text] [Related]
15. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Storace M; Linaro D; de Lange E Chaos; 2008 Sep; 18(3):033128. PubMed ID: 19045466 [TBL] [Abstract][Full Text] [Related]
16. Basis Function Matrix-Based Flexible Coefficient Autoregressive Models: A Framework for Time Series and Nonlinear System Modeling. Chen GY; Gan M; Chen CLP; Li HX IEEE Trans Cybern; 2021 Feb; 51(2):614-623. PubMed ID: 30869637 [TBL] [Abstract][Full Text] [Related]
17. A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry. Lu S; Ju KH; Chon KH IEEE Trans Biomed Eng; 2001 Oct; 48(10):1116-24. PubMed ID: 11585035 [TBL] [Abstract][Full Text] [Related]
18. Decoupled ARX and RBF Neural Network Modeling Using PCA and GA Optimization for Nonlinear Distributed Parameter Systems. Zhang R; Tao J; Lu R; Jin Q IEEE Trans Neural Netw Learn Syst; 2018 Feb; 29(2):457-469. PubMed ID: 27959823 [TBL] [Abstract][Full Text] [Related]
19. Identifying dynamical systems with bifurcations from noisy partial observation. Kondo Y; Kaneko K; Ishihara S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042716. PubMed ID: 23679458 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of Oscillatory Reactions Deduced from Bifurcation Diagrams. Schreiber I; Ross J J Phys Chem A; 2003 Nov; 107(46):9846-59. PubMed ID: 26313427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]