These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11969950)

  • 1. Mechanism of low-threshold hypersonic cavitation stimulated by broadband laser pump.
    Bunkin NF; Lobeyev AV; Lyakhov GA; Ninham BW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1681-90. PubMed ID: 11969950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow and fast light via SBS in optical fibers for short pulses and broadband pump.
    Kalosha VP; Chen L; Bao X
    Opt Express; 2006 Dec; 14(26):12693-703. PubMed ID: 19532161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers.
    David A; Horowitz M
    Opt Express; 2011 Jun; 19(12):11792-803. PubMed ID: 21716412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering.
    Long X; Zou W; Chen J
    Opt Express; 2016 Mar; 24(5):5162-5171. PubMed ID: 29092343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of inhomogeneous spectral broadening of stimulated brillouin scattering in an optical fiber.
    Kovalev VI; Harrison RG
    Phys Rev Lett; 2000 Aug; 85(9):1879-82. PubMed ID: 10970637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral broadening of continuous-wave monochromatic pump radiation caused by stimulated Brillouin scattering in optical fiber.
    Kovalev VI; Harrison RG
    Opt Lett; 2004 Feb; 29(4):379-81. PubMed ID: 14971759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation.
    Pant R; Li E; Choi DY; Poulton CG; Madden SJ; Luther-Davies B; Eggleton BJ
    Opt Lett; 2011 Sep; 36(18):3687-9. PubMed ID: 21931433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wideband excitation of Fano resonances and induced transparency by coherent interactions between Brillouin resonances.
    Pant R; A SS; Yelikar AB
    Sci Rep; 2018 Jun; 8(1):9175. PubMed ID: 29907792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband instantaneous frequency measurement based on stimulated Brillouin scattering.
    Long X; Zou W; Chen J
    Opt Express; 2017 Feb; 25(3):2206-2214. PubMed ID: 29519068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous generation of guided-acoustic-wave Brillouin scattering and stimulated-Brillouin-scattering in hybrid As
    Saxena B; Baker C; Bao X; Chen L
    Opt Express; 2019 May; 27(10):13734-13743. PubMed ID: 31163832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering.
    Wang Z; Wu H; Fan M; Li Y; Gong Y; Rao Y
    Opt Express; 2013 Dec; 21(24):29358-63. PubMed ID: 24514489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-domain study of nonthermal gigahertz phonons reveals Fano coupling to charge carriers.
    Vasileiadis T; Zhang H; Wang H; Bonn M; Fytas G; Graczykowski B
    Sci Adv; 2020 Dec; 6(51):. PubMed ID: 33355135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams.
    Wang S; Ren L; Liu Y; Tomita Y
    Opt Express; 2008 May; 16(11):8067-76. PubMed ID: 18545519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of an acoustic technique to detect cavitation produced by a tilting disc valve.
    Herman BA; Porter JM; Carey RF
    J Heart Valve Dis; 1996 Jan; 5(1):90-6. PubMed ID: 8834731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.
    Al-Asadi HA; Al-Mansoori MH; Ajiya M; Hitam S; Saripan MI; Mahdi MA
    Opt Express; 2010 Oct; 18(21):22339-47. PubMed ID: 20941134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoting inertial cavitation by nonlinear frequency mixing in a bifrequency focused ultrasound beam.
    Saletes I; Gilles B; Bera JC
    Ultrasonics; 2011 Jan; 51(1):94-101. PubMed ID: 20637485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-frequency Brillouin distributed feedback fiber laser.
    Abedin KS; Westbrook PS; Nicholson JW; Porque J; Kremp T; Liu X
    Opt Lett; 2012 Feb; 37(4):605-7. PubMed ID: 22344121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic Far-Field Hypersonic Surface Wave Detection with Single Plasmonic Nanoantennas.
    Berte R; Della Picca F; Poblet M; Li Y; Cortés E; Craster RV; Maier SA; Bragas AV
    Phys Rev Lett; 2018 Dec; 121(25):253902. PubMed ID: 30608776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved studies of Nd:YAG laser-induced breakdown. Plasma formation, acoustic wave generation, and cavitation.
    Fujimoto JG; Lin WZ; Ippen EP; Puliafito CA; Steinert RF
    Invest Ophthalmol Vis Sci; 1985 Dec; 26(12):1771-7. PubMed ID: 4066213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror.
    Lim DS; Lee HK; Kim KH; Kang SB; Ahn JT; Jeon MY
    Opt Lett; 1998 Nov; 23(21):1671-3. PubMed ID: 18091879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.