These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 11969963)
21. Multistability of oscillatory thermocapillary convection in a liquid bridge. Shevtsova VM; Melnikov DE; Legros JC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066311. PubMed ID: 14754319 [TBL] [Abstract][Full Text] [Related]
22. Wave number selection in the presence of noise: Experimental results. Zhilenko D; Krivonosova O; Gritsevich M; Read P Chaos; 2018 May; 28(5):053110. PubMed ID: 29857673 [TBL] [Abstract][Full Text] [Related]
23. On the stability of lumps and wave collapse in water waves. Akylas TR; Cho Y Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2761-74. PubMed ID: 18487123 [TBL] [Abstract][Full Text] [Related]
24. Existence of traveling wave solutions in a diffusive predator-prey model. Huang J; Lu G; Ruan S J Math Biol; 2003 Feb; 46(2):132-52. PubMed ID: 12567231 [TBL] [Abstract][Full Text] [Related]
25. Traveling hairpin-shaped fluid vortices in plane Couette flow. Deguchi K; Nagata M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056325. PubMed ID: 21230594 [TBL] [Abstract][Full Text] [Related]
26. Subcritical instabilities in a convective fluid layer under a quasi-one-dimensional heating. Miranda MA; Burguete J Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046305. PubMed ID: 18999524 [TBL] [Abstract][Full Text] [Related]
27. Bifurcation diversity of dynamic thermocapillary liquid layers. Hoyas S; Herrero H; Mancho AM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):057301. PubMed ID: 12513642 [TBL] [Abstract][Full Text] [Related]
28. Dispersive-to-nondispersive transition and phase-velocity transient for linear waves in plane wake and channel flows. De Santi F; Fraternale F; Tordella D Phys Rev E; 2016 Mar; 93(3):033116. PubMed ID: 27078456 [TBL] [Abstract][Full Text] [Related]
29. Transient two-layer thin-film flow inside a channel. Alba K; Laure P; Khayat RE Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026320. PubMed ID: 21929103 [TBL] [Abstract][Full Text] [Related]
31. Numerical analysis of the Eckhaus instability in travelling-wave convection in binary mixtures. Mercader I; Alonso A; Batiste O Eur Phys J E Soft Matter; 2004 Nov; 15(3):311-8. PubMed ID: 15592771 [TBL] [Abstract][Full Text] [Related]
32. Waves and instabilities of viscoelastic fluid film flowing down an inclined wavy bottom. Mukhopadhyay S; Mukhopadhyay A Phys Rev E; 2020 Aug; 102(2-1):023117. PubMed ID: 32942486 [TBL] [Abstract][Full Text] [Related]
33. Stability analysis of plane wave solutions of the discrete ginzburg-landau equation. Ravoux JF; Le Dizes S ; Le Gal P Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):390-3. PubMed ID: 11046277 [TBL] [Abstract][Full Text] [Related]
34. Critical-Layer Structures and Mechanisms in Elastoinertial Turbulence. Shekar A; McMullen RM; Wang SN; McKeon BJ; Graham MD Phys Rev Lett; 2019 Mar; 122(12):124503. PubMed ID: 30978052 [TBL] [Abstract][Full Text] [Related]
35. Nonlinear evolution of viscoplastic film flows down an inclined plane. Mounkaila Noma D; Dagois-Bohy S; Millet S; Ben Hadid H; Botton V; Henry D Eur Phys J E Soft Matter; 2023 Aug; 46(8):68. PubMed ID: 37535112 [TBL] [Abstract][Full Text] [Related]
36. Stability of gravity-capillary solitary waves on shallow water based on the fifth-order Kadomtsev-Petviashvili equation. Cho Y Phys Rev E; 2018 Jul; 98(1-1):012213. PubMed ID: 30110743 [TBL] [Abstract][Full Text] [Related]
37. Convective instabilities in two superposed horizontal liquid layers heated laterally. Madruga S; Pérez-García C; Lebon G Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041607. PubMed ID: 14682953 [TBL] [Abstract][Full Text] [Related]
38. Origin of finite pulse trains: Homoclinic snaking in excitable media. Yochelis A; Knobloch E; Köpf MH Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032924. PubMed ID: 25871189 [TBL] [Abstract][Full Text] [Related]
39. Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation. Sánchez-Rey B; Johansson M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036627. PubMed ID: 15903625 [TBL] [Abstract][Full Text] [Related]
40. Shear driven solitary waves on a liquid film. Frank AM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):065301. PubMed ID: 17280111 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]