These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11970148)

  • 1. Theory of photorefractive vectorial wave coupling in cubic crystals.
    Sturman BI; Podivilov EV; Ringhofer KH; Shamonina E; Kamenov VP; Nippolainen E; Prokofiev VV; Kamshilin AA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3332-52. PubMed ID: 11970148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solutions for vectorial beam coupling under ac field in cubic photorefractive crystals.
    Sturman BI; Filippov OS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036613. PubMed ID: 14524918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffractive properties of volume phase gratings in photorefractive sillenite crystals of arbitrary cut under the influence of an external electric field.
    Deliolanis NC; Kourmoulis IM; Apostolidis AG; Vanidhis ED; Papazoglou DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056602. PubMed ID: 14682901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vectorial two-beam coupling with arbitrary shifted photorefractive gratings: an analytical approach.
    Khomenko AV; Rocha-Mendoza I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066615. PubMed ID: 15697534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of critical enhancement of photorefractive beam coupling.
    Podivilov EV; Sturman BI; Gorkunov MV; Kamenov VP; Ringhofer KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046623. PubMed ID: 12006063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional vectorial light amplification in cubic crystals with unshifted photorefractive gratings.
    Rocha-Mendoza I; Khomenko AV
    Opt Lett; 2002 Aug; 27(16):1448-50. PubMed ID: 18026475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-wave mixing in (111)-cut Bi12SiO20 and Bi12TiO20 crystals: characterization and comparison with the general orientation.
    Kamenov VP; Hu Y; Shamonina E; Ringhofer KH; Gayvoronsky VY
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2863-70. PubMed ID: 11088769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientational dependence of photorefractive two-beam coupling in InP:Fe.
    Strait J; Reed JD; Kukhtarev NV
    Opt Lett; 1990 Feb; 15(4):209-11. PubMed ID: 19759759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis of vectorial two-beam coupling in photorefractive materials.
    Passaro V; Marseglia D
    Opt Express; 2002 Dec; 10(24):1384-90. PubMed ID: 19452003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field control of a Bragg diffraction optical beam splitter based on a cubic K(0.99)Li(0.01)Ta(0.63)Nb(0.37)O3 single crystal.
    Gong D; Tian H; Tan L; Zhou Z
    Appl Opt; 2011 Jan; 50(1):28-32. PubMed ID: 21221156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photorefractive light scattering families in (111)-cut Bi12TiO20 crystals with an external electric ac field.
    Kamenov VP; Shamonina E; Ringhofer KH; Nippolainen E; Prokofiev VV; Kamshilin AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016607. PubMed ID: 11304378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of recording conditions on crossed-beam photorefractive gratings in doubly doped LiNbO3 crystals.
    Wang X; Yan A; Liu L; Liu D; Zhi Y; Hu Z
    Appl Opt; 2006 Aug; 45(23):5942-9. PubMed ID: 16926882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Off-Bragg analysis of the diffraction efficiency of reflection photorefractive holograms.
    Nonaka K
    Appl Opt; 1998 May; 37(15):3215-21. PubMed ID: 18273272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-polarization beam coupling in photorefractive GaAs crystals.
    Cheng LJ; Yeh P
    Opt Lett; 1988 Jan; 13(1):50-2. PubMed ID: 19741977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (2+1)-dimensional soliton formation in photorefractive Bi12SiO20 crystals.
    Fazio E; Ramadan W; Belardini A; Bosco A; Bertolotti M; Petris A; Vlad VI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026611. PubMed ID: 12636845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Description of readout processes during strong beam coupling.
    Sturman B; Giel DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066603. PubMed ID: 15244760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell.
    Reshetnyak VY; Pinkevych IP; Cook G; Evans DR; Sluckin TJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031705. PubMed ID: 20365749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffraction efficiency of volume holograms written by coupled beams.
    Hong JH; Saxena R
    Opt Lett; 1991 Feb; 16(3):180-2. PubMed ID: 19773875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial rectification of the electric field of space charge waves.
    Petrov MP; Paugurt AP; Bryksin VV; Wevering S; Kratzig E
    Phys Rev Lett; 2000 May; 84(22):5114-7. PubMed ID: 10990880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of applied fields on the Bragg condition and the diffraction efficiency in photorefractive crystals.
    De Vré R; Jeganathan M; Wilde JP; Hesselink L
    Opt Lett; 1994 Jun; 19(12):910-2. PubMed ID: 19844485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.