These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11970215)

  • 1. Self-similar renormalization approach to barrier crossing processes.
    Drozdov AN; Hayashi S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3804-13. PubMed ID: 11970215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational theory of activated rate processes for an arbitrary barrier.
    Drozdov AN
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1879-92. PubMed ID: 11088651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally activated escape rate for the Brownian motion of a fixed axis rotator in an asymmetrical double-well potential for all values of the dissipation.
    Kalmykov YP; Titov SV; Coffey WT
    J Chem Phys; 2005 Sep; 123(9):94503. PubMed ID: 16164349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpolation formula between very low and intermediate-to-high damping Kramers escape rates for single-domain ferromagnetic particles.
    Déjardin PM; Crothers DS; Coffey WT; McCarthy DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021102. PubMed ID: 11308463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally activated escape rate for a Brownian particle in a double-well potential for all values of the dissipation.
    Kalmykov YP; Coffey WT; Titov SV
    J Chem Phys; 2006 Jan; 124(2):024107. PubMed ID: 16422571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally activated escape rate for the Brownian motion of a fixed axis rotator in a double well potential for all values of the dissipation.
    Coffey WT; Kalmykov YP; Titov SV
    J Chem Phys; 2004 May; 120(19):9199-211. PubMed ID: 15267857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of Kramers' turnover theory in the presence of exponential memory friction.
    Ianconescu R; Pollak E
    J Chem Phys; 2015 Sep; 143(10):104104. PubMed ID: 26374015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach.
    Trigger SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046403. PubMed ID: 12786497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally activated escape rate for a Brownian particle in a tilted periodic potential for all values of the dissipation.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061101. PubMed ID: 16906803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements to Kramers turnover theory.
    Pollak E; Ankerhold J
    J Chem Phys; 2013 Apr; 138(16):164116. PubMed ID: 23635120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.
    Banik SK; Bag BC; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approach to quantum Kramers' equation and barrier crossing dynamics.
    Banerjee D; Bag BC; Banik SK; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021109. PubMed ID: 11863505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum tunneling at zero temperature in the strong friction regime.
    Bolivar AO
    Phys Rev Lett; 2005 Jan; 94(2):026807. PubMed ID: 15698213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for the brownian motion in a potential. II. The matrix continued fraction approach.
    Kalmykov YP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):227-36. PubMed ID: 11088456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brownian motion in inhomogeneous suspensions.
    Yang M; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fokker-Planck-type equations for a simple gas and for a semirelativistic Brownian motion from a relativistic kinetic theory.
    Chacón-Acosta G; Kremer GM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021201. PubMed ID: 17930026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing Brownian escape rates by potential shaping.
    Chupeau M; Gladrow J; Chepelianskii A; Keyser UF; Trizac E
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1383-1388. PubMed ID: 31843891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial effects in the orientational relaxation of rodlike molecules in a uniaxial potential.
    Kalmykov YP; Titov SV; Coffey WT
    J Chem Phys; 2009 Feb; 130(6):064110. PubMed ID: 19222270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.