These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11970220)

  • 1. Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets in confined geometries.
    Chatelain C; Berche B
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3853-65. PubMed ID: 11970220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial adsorption in two-dimensional pure and random-bond Potts models.
    Fytas NG; Theodorakis PE; Malakis A
    Phys Rev E; 2017 Mar; 95(3-1):032126. PubMed ID: 28415364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo study of the triangular Blume-Capel model under bond randomness.
    Theodorakis PE; Fytas NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011140. PubMed ID: 23005401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong violation of critical phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel model under bond randomness.
    Malakis A; Berker AN; Hadjiagapiou IA; Fytas NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011125. PubMed ID: 19257019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Softening of first-order transition in three-dimensions by quenched disorder.
    Chatelain C; Berche B; Janke W; Berche PE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036120. PubMed ID: 11580407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic limit of the bond-percolation model and conformal invariance in curved geometries.
    Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066129. PubMed ID: 15244689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Monte Carlo simulations of the three-dimensional random-bond Potts model.
    Yin JQ; Zheng B; Trimper S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036122. PubMed ID: 16241530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-time dynamics and magnetic critical behavior of the two-dimensional random-bond potts model.
    Ying HP; Harada K
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):174-8. PubMed ID: 11088449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of quenched disorder in the two-dimensional Potts model: a Monte Carlo study.
    Paredes V R; Valbuena J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6275-80. PubMed ID: 11969611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical dynamics of the two-dimensional random-bond Potts model with nonequilibrium Monte Carlo simulations.
    Fan S; Zhong F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011122. PubMed ID: 19257016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformal invariance and the Ising model on a spheroid.
    Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036107. PubMed ID: 12689132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logarithmic corrections to correlation decay in two-dimensional random-bond Ising systems.
    Lessa JC; de Queiroz SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021114. PubMed ID: 17025400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bulk and surface critical behavior of the three-dimensional Ising model and conformal invariance.
    Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066116. PubMed ID: 16241313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical evidence of a universal critical behavior of two-dimensional and three-dimensional random quantum clock and Potts models.
    Anfray V; Chatelain C
    Phys Rev E; 2023 Jul; 108(1-1):014124. PubMed ID: 37583146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dilute Potts model in two dimensions.
    Qian X; Deng Y; Blöte HW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056132. PubMed ID: 16383713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disorder-induced rounding of the phase transition in the large-q-state Potts model.
    Mercaldo MT; Anglès D'Auriac JC; Iglói F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056112. PubMed ID: 15244888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infinite-randomness critical point in the two-dimensional disordered contact process.
    Vojta T; Farquhar A; Mast J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011111. PubMed ID: 19257005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic phase transitions in the presence of quenched randomness.
    Vatansever E; Fytas NG
    Phys Rev E; 2018 Jun; 97(6-1):062146. PubMed ID: 30011603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universality aspects of the d = 3 random-bond Blume-Capel model.
    Malakis A; Berker AN; Fytas NG; Papakonstantinou T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061106. PubMed ID: 23005050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric properties of two-dimensional critical and tricritical Potts models.
    Deng Y; Blöte HW; Nienhuis B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026123. PubMed ID: 14995536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.