These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 11970234)
1. Semiclassical treatment of diffraction in billiard systems with a flux line. Sieber M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3982-91. PubMed ID: 11970234 [TBL] [Abstract][Full Text] [Related]
2. Diffractive corrections in the trace formula for polygonal billiards. Bogomolny E; Pavloff N; Schmit C Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3689-711. PubMed ID: 11088147 [TBL] [Abstract][Full Text] [Related]
3. Atoms in parallel fields: analysis with diffractive periodic orbits. Owen SM; Monteiro TS; Dando PA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6388-97. PubMed ID: 11101974 [TBL] [Abstract][Full Text] [Related]
4. Pseudopath semiclassical approximation to transport through open quantum billiards: Dyson equation for diffractive scattering. Stampfer C; Rotter S; Burgdörfer J; Wirtz L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036223. PubMed ID: 16241564 [TBL] [Abstract][Full Text] [Related]
5. Influence of diffraction on the spectrum and wave functions of an open system. Hersch JS; Haggerty MR; Heller EJ Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4873-88. PubMed ID: 11089033 [TBL] [Abstract][Full Text] [Related]
6. Anomalous shell effect in the transition from a circular to a triangular billiard. Arita K; Brack M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056211. PubMed ID: 18643146 [TBL] [Abstract][Full Text] [Related]
7. Semiclassical relation between open trajectories and periodic orbits for the Wigner time delay. Kuipers J; Sieber M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046219. PubMed ID: 18517722 [TBL] [Abstract][Full Text] [Related]
9. Semiclassical propagator to evaluate off-diagonal matrix elements of the evolution operator between quantum states. Vergini EG Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):020901. PubMed ID: 25353408 [TBL] [Abstract][Full Text] [Related]
11. Test of semiclassical amplitudes for quantum ray-splitting systems. Kohler A; Blümel R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):7228-30. PubMed ID: 11969716 [TBL] [Abstract][Full Text] [Related]
12. Communication: Semiclassical perturbation theory for the quantum diffractive scattering of atoms on thermal surfaces. Daon S; Pollak E; Miret-Artés S J Chem Phys; 2012 Nov; 137(20):201103. PubMed ID: 23205974 [TBL] [Abstract][Full Text] [Related]
13. Low-rank perturbations and the spectral statistics of pseudointegrable billiards. Gorin T; Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):065205. PubMed ID: 14754256 [TBL] [Abstract][Full Text] [Related]
14. Exact relations between homoclinic and periodic orbit actions in chaotic systems. Li J; Tomsovic S Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081 [TBL] [Abstract][Full Text] [Related]
15. Diffraction and spectral statistics in systems with a multilevel scatterer. Matzkin A; Monteiro TS Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046215. PubMed ID: 15600503 [TBL] [Abstract][Full Text] [Related]
17. Semiclassical approximations based on complex trajectories. Ribeiro AD; de Aguiar MA; Baranger M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066204. PubMed ID: 15244705 [TBL] [Abstract][Full Text] [Related]
18. Semiclassical analysis of the quantum instanton approximation. Vaillant CL; Thapa MJ; Vaníček J; Richardson JO J Chem Phys; 2019 Oct; 151(14):144111. PubMed ID: 31615229 [TBL] [Abstract][Full Text] [Related]
19. Semiclassical Poincare map for integrable systems. Lauritzen B Chaos; 1992 Jul; 2(3):409-412. PubMed ID: 12779990 [TBL] [Abstract][Full Text] [Related]
20. A scattering approach to the quantization of billiards- The inside-outside duality. Dietz B; Smilansky U Chaos; 1993 Oct; 3(4):581-589. PubMed ID: 12780063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]