These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11970273)

  • 1. NMR spectra from Monte Carlo simulations of polymer dispersed liquid crystals.
    Chiccoli C; Pasini P; Skacej G; Zannoni C; Zumer S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4219-25. PubMed ID: 11970273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical and field effects in polymer-dispersed liquid crystals: monte carlo simulations of NMR spectra.
    Chiccoli C; Pasini P; Skacej G; Zannoni C; Zumer S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3766-74. PubMed ID: 11088893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-induced orientational order in stretched nanoscale-sized polymer dispersed liquid-crystal droplets.
    Amimori I; Eakin JN; Qi J; Skacej G; Zumer S; Crawford GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031702. PubMed ID: 15903442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of different boundary treatment methods in Monte-Carlo simulations of diffusion NMR.
    Xing H; Lin F; Wu Q; Gong Q
    Magn Reson Med; 2013 Oct; 70(4):1167-72. PubMed ID: 23169149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal nanoparticles trapped by liquid-crystal defect lines: a lattice Monte Carlo simulation.
    Jose R; Skačej G; Sastry VS; Žumer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032503. PubMed ID: 25314461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation and molecular theory of tethered polyelectrolytes.
    Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I
    J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of EPR Spectra of Lyotropic Liquid Crystals using a Combination of Molecular Dynamics Simulations and the Model-Free Approach.
    Prior C; Oganesyan VS
    Chemistry; 2017 Sep; 23(53):13192-13204. PubMed ID: 28741312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnosing Fractionalization from the Spin Dynamics of Z_{2} Spin Liquids on the Kagome Lattice by Quantum Monte Carlo Simulations.
    Becker J; Wessel S
    Phys Rev Lett; 2018 Aug; 121(7):077202. PubMed ID: 30169092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surface anchoring conditions on the dielectric and electro-optical properties of nematic droplets dispersed in a polymer network.
    Boussoualem M; Ismaili M; Roussel F
    Soft Matter; 2014 Jan; 10(2):367-73. PubMed ID: 24651946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion of small particles in polymer films.
    Polanowski P; Sikorski A
    J Chem Phys; 2017 Jul; 147(1):014902. PubMed ID: 28688408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of DNMR spectra using propagator formalism and Monte Carlo method.
    Szalay Z; Rohonczy J
    J Magn Reson; 2009 Mar; 197(1):48-55. PubMed ID: 19121593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of melting times and critical droplet in kinetic Monte Carlo and molecular dynamics.
    Lemarchand CA
    J Chem Phys; 2013 Jan; 138(3):034506. PubMed ID: 23343284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of dense polymer melts using event chain algorithms.
    Kampmann TA; Boltz HH; Kierfeld J
    J Chem Phys; 2015 Jul; 143(4):044105. PubMed ID: 26233105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grand canonical Monte Carlo simulations of the 129Xe NMR line shapes of xenon adsorbed in (+/-)-[Co(en)3]Cl3.
    Sears DN; Wasylishen RE; Ueda T
    J Phys Chem B; 2006 Jun; 110(23):11120-7. PubMed ID: 16771374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deuterium NMR of the TGBA* phase in chiral liquid crystals.
    Zhang J; Domenici V; Veracini CA; Dong RY
    J Phys Chem B; 2006 Aug; 110(31):15193-7. PubMed ID: 16884234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure transitions in oblate nematic droplets.
    Rudyak VY; Emelyanenko AV; Loiko VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052501. PubMed ID: 24329282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Texture formation under phase ordering and phase separation in polymer-liquid crystal mixtures.
    Das SK; Rey AD
    J Chem Phys; 2004 Nov; 121(19):9733-43. PubMed ID: 15538897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Director configurations in nematic droplets with inhomogeneous boundary conditions.
    Prishchepa OO; Shabanov AV; Zyryanov VY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031712. PubMed ID: 16241465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo study of the effect of an applied field on the molecular organization of polymer-dispersed liquid-crystal droplets.
    Berggren E; Zannoni C; Chiccoli C; Pasini P; Semeria F
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1994 Jan; 49(1):614-622. PubMed ID: 9961252
    [No Abstract]   [Full Text] [Related]  

  • 20. Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals.
    Escuti MJ; Qi J; Crawford GP
    Opt Lett; 2003 Apr; 28(7):522-4. PubMed ID: 12696603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.