BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11970331)

  • 1. Dielectric dispersion of biological matter: model combining Debye-type and "universal" responses.
    Raicu V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4677-80. PubMed ID: 11970331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A program for the fitting of Debye, Cole-Cole, Cole-Davidson, and Havriliak-Negami dispersions to dielectric data.
    Grosse C
    J Colloid Interface Sci; 2014 Apr; 419():102-6. PubMed ID: 24491337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the non-exponentiality of the dielectric Debye-like relaxation of monoalcohols.
    Arrese-Igor S; Alegría A; Colmenero J
    J Chem Phys; 2017 Mar; 146(11):114502. PubMed ID: 28330358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A program for the fitting of up to three Havriliak-Negami dispersions to dielectric data.
    Grosse C
    J Colloid Interface Sci; 2021 Oct; 600():318-323. PubMed ID: 34022728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time Domain Characterization of the Cole-Cole Dielectric Model.
    Holm S
    J Electr Bioimpedance; 2020 Jan; 11(1):101-105. PubMed ID: 33584910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why the dipolar response in dielectrics and spin-glasses is unavoidably universal.
    Cuervo-Reyes E
    Sci Rep; 2016 Jul; 6():29021. PubMed ID: 27366866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of disordered matter to electromagnetic fields.
    Lunkenheimer P; Loidl A
    Phys Rev Lett; 2003 Nov; 91(20):207601. PubMed ID: 14683394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Debye's model for the dielectric relaxation of liquid water and the role of cross-dipolar correlations. A MD-simulations study.
    Alvarez F; Arbe A; Colmenero J
    J Chem Phys; 2023 Oct; 159(13):. PubMed ID: 37787136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immittance Studies of Bi
    Lisińska-Czekaj A; Czekaj D; Garbarz-Glos B; Bąk W
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33266428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature on the electrical properties of lanthanum ferrite.
    Andoulsi-Fezei R; Sdiri N; Horchani-Naifer K; Férid M
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():214-220. PubMed ID: 30015028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional rotational diffusion of rigid dipoles in an asymmetrical double-well potential.
    Coffey WT; Kalmykov YP; Titov SV; Vij JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011103. PubMed ID: 16089933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of local A-site strain on dipole stability in A6GaNb9O30 (A = Ba, Sr, Ca) tetragonal tungsten bronze relaxor dielectrics.
    Miller AJ; Rotaru A; Arnold DC; Morrison FD
    Dalton Trans; 2015 Jun; 44(23):10738-45. PubMed ID: 25687218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cole-Davidson dynamics of simple chain models.
    Dotson TC; Budzien J; McCoy JD; Adolf DB
    J Chem Phys; 2009 Jan; 130(2):024903. PubMed ID: 19154052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous relaxation and dielectric response.
    Goychuk I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):040102. PubMed ID: 17994921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cole-Cole broadening in dielectric relaxation and strange kinetics.
    Puzenko A; Ishai PB; Feldman Y
    Phys Rev Lett; 2010 Jul; 105(3):037601. PubMed ID: 20867807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency dispersions of human skin dielectrics.
    Poon CS; Choy TT
    Biophys J; 1981 Apr; 34(1):135-47. PubMed ID: 7213928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric properties of mammalian breast milk at radiofrequencies.
    Laogun AA
    Phys Med Biol; 1986 May; 31(5):555-61. PubMed ID: 3737688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound velocity dispersion in room temperature ionic liquids studied using the transient grating method.
    Fukuda M; Terazima M; Kimura Y
    J Chem Phys; 2008 Mar; 128(11):114508. PubMed ID: 18361592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of the Debye relaxation in liquid water and fitting the high frequency excess response.
    Elton DC
    Phys Chem Chem Phys; 2017 Jul; 19(28):18739-18749. PubMed ID: 28696459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brillouin-scattering study of propylene carbonate: an evaluation of phenomenological and mode coupling analyses.
    Brodin A; Frank M; Wiebel S; Shen G; Wuttke J; Cummins HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051503. PubMed ID: 12059560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.