These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11970414)

  • 1. Control of chaotic spatiotemporal spiking by time-delay autosynchronization.
    Franceschini G; Bose S; Schöll E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5426-34. PubMed ID: 11970414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamical systems approach to the control of chaotic dynamics in a spatiotemporal jet flow.
    Narayanan S; Gunaratne GH; Hussain F
    Chaos; 2013 Sep; 23(3):033133. PubMed ID: 24089969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of chaotic Taylor-Couette flow with time-delayed feedback.
    Lüthje O; Wolff S; Pfister G
    Phys Rev Lett; 2001 Feb; 86(9):1745-8. PubMed ID: 11290238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaos control by electric current in an enzymatic reaction.
    Lekebusch A; Förster A; Schneider FW
    Int J Neural Syst; 1996 Sep; 7(4):393-7. PubMed ID: 8968829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant improvement of time-delayed feedback control by spatio-temporal filtering.
    Baba N; Amann A; Schöll E; Just W
    Phys Rev Lett; 2002 Aug; 89(7):074101. PubMed ID: 12190520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor.
    Perc M; Marhl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016204. PubMed ID: 15324149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis.
    Sukow DW; Bleich ME; Gauthier DJ; Socolar JE
    Chaos; 1997 Dec; 7(4):560-576. PubMed ID: 12779682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competing spatial and temporal instabilities in a globally coupled bistable semiconductor system near a codimension-two bifurcation.
    Bose S; Rodin P; Scholl E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1778-89. PubMed ID: 11088640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation.
    Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL
    Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of chaotic solitons by a time-delayed feedback mechanism.
    Fronczak P; Hołyst JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026219. PubMed ID: 11863644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-delay autosynchronization of the spatiotemporal dynamics in resonant tunneling diodes.
    Unkelbach J; Amann A; Just W; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026204. PubMed ID: 14525081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems.
    Saiki Y; Yamada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaos-hyperchaos transition.
    Kapitaniak T; Maistrenko Y; Popovych S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1972-6. PubMed ID: 11088661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral element method and the delayed feedback control of chaos.
    Tweten DJ; Mann BP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046214. PubMed ID: 23214670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Globally enumerating unstable periodic orbits for observed data using symbolic dynamics.
    Buhl M; Kennel MB
    Chaos; 2007 Sep; 17(3):033102. PubMed ID: 17902984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locating unstable periodic orbits: when adaptation integrates into delayed feedback control.
    Lin W; Ma H; Feng J; Chen G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046214. PubMed ID: 21230372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network analysis of chaotic systems through unstable periodic orbits.
    Kobayashi MU; Saiki Y
    Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaotic operation and chaos control of travelling wave ultrasonic motor.
    Shi J; Zhao F; Shen X; Wang X
    Ultrasonics; 2013 Aug; 53(6):1112-23. PubMed ID: 23490014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.