These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11970418)

  • 1. Crossover from chaotic to self-organized critical dynamics in jerky flow of single crystals.
    Ananthakrishna G; Noronha SJ; Fressengeas C; Kubin LP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5455-62. PubMed ID: 11970418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical approach to the spatiotemporal aspects of the Portevin-Le Chatelier effect: chaos, turbulence, and band propagation.
    Ananthakrishna G; Bharathi MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026111. PubMed ID: 15447549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of crossover from a chaotic to a power-law state in jerky flow.
    Bharathi MS; Ananthakrishna G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):065104. PubMed ID: 16241289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation versus randomization of jerky flow in an AlMgScZr alloy using acoustic emission.
    Lebedkina TA; Zhemchuzhnikova DA; Lebyodkin MA
    Phys Rev E; 2018 Jan; 97(1-1):013001. PubMed ID: 29448460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.
    Kumar J; Ananthakrishna G
    Phys Rev E; 2018 Jan; 97(1-1):012201. PubMed ID: 29448439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation oscillations and negative strain rate sensitivity in the portevin-Le chatelier effect.
    Rajesh S; Ananthakrishna G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3664-74. PubMed ID: 11088144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lyapunov exponents and transport in the Zhang model of self-organized criticality.
    Cessac B; Blanchard P; Krüger T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016133. PubMed ID: 11461357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifractal burst in the spatiotemporal dynamics of jerky flow.
    Bharathi MS; Lebyodkin M; Ananthakrishna G; Fressengeas C; Kubin LP
    Phys Rev Lett; 2001 Oct; 87(16):165508. PubMed ID: 11690215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
    Touboul J; Destexhe A
    PLoS One; 2010 Feb; 5(2):e8982. PubMed ID: 20161798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-organized criticality in neural networks from activity-based rewiring.
    Landmann S; Baumgarten L; Bornholdt S
    Phys Rev E; 2021 Mar; 103(3-1):032304. PubMed ID: 33862737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling behavior of the Portevin-Le Chatelier effect in an Al-2.5%Mg alloy.
    Barat P; Sarkar A; Mukherjee P; Bandyopadhyay SK
    Phys Rev Lett; 2005 Feb; 94(5):055502. PubMed ID: 15783660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of system size on spatiotemporal dynamics of a model for plastic instability: projecting low-dimensional and extensive chaos.
    Sarmah R; Ananthakrishna G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052907. PubMed ID: 23767598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projecting low-dimensional chaos from spatiotemporal dynamics in a model for plastic instability.
    Sarmah R; Ananthakrishna G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056208. PubMed ID: 23214858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic critical approach to self-organized criticality.
    Laneri K; Rozenfeld AF; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):065105. PubMed ID: 16485999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between self-organized criticality and grain aspect ratio in granular piles.
    Denisov DV; Villanueva YY; Lőrincz KA; May S; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051309. PubMed ID: 23004752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice.
    Aegerter CM; Günther R; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051306. PubMed ID: 12786145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Criticality in sheared, disordered solids. II. Correlations in avalanche dynamics.
    Clemmer JT; Salerno KM; Robbins MO
    Phys Rev E; 2021 Apr; 103(4-1):042606. PubMed ID: 34005991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic dynamics of driven flux drops: a superconducting "dripping faucet".
    Field SB; Stan G
    Phys Rev Lett; 2008 Feb; 100(7):077001. PubMed ID: 18352586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos.
    Pazó D; López JM; Politi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smooth and filamental structures in chaotically advected chemical fields.
    Tzella A; Haynes PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016322. PubMed ID: 20365475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.