These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 11970420)
1. Using unstable periodic orbits to overcome distortion in chaotic signals. Carroll TL Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5469-73. PubMed ID: 11970420 [TBL] [Abstract][Full Text] [Related]
2. Network analysis of chaotic systems through unstable periodic orbits. Kobayashi MU; Saiki Y Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482 [TBL] [Abstract][Full Text] [Related]
3. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
4. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
5. Construction of an associative memory using unstable periodic orbits of a chaotic attractor. Wagner C; Stucki JW J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844 [TBL] [Abstract][Full Text] [Related]
6. Detecting unstable periodic orbits from transient chaotic time series. Dhamala M; Lai YC; Kostelich EJ Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6485-9. PubMed ID: 11088327 [TBL] [Abstract][Full Text] [Related]
8. Comment on "Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems". Zaks MA; Goldobin DS Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):018201; discussion 018202. PubMed ID: 20365510 [TBL] [Abstract][Full Text] [Related]
9. Attractor switching by neural control of chaotic neurodynamics. Pasemann F; Stollenwerk N Network; 1998 Nov; 9(4):549-61. PubMed ID: 10221579 [TBL] [Abstract][Full Text] [Related]
10. Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor. Perc M; Marhl M Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016204. PubMed ID: 15324149 [TBL] [Abstract][Full Text] [Related]
11. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation. Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089 [TBL] [Abstract][Full Text] [Related]
12. Resonance phenomena controlled by external feedback signals and additive noise in neural systems. Nobukawa S; Shibata N; Nishimura H; Doho H; Wagatsuma N; Yamanishi T Sci Rep; 2019 Sep; 9(1):12630. PubMed ID: 31477740 [TBL] [Abstract][Full Text] [Related]