These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11970558)

  • 21. Propagation of spiral waves pinned to circular and rectangular obstacles.
    Sutthiopad M; Luengviriya J; Porjai P; Phantu M; Kanchanawarin J; Müller SC; Luengviriya C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052912. PubMed ID: 26066234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wave grouping of a meandering spiral induced by Doppler effects and oscillatory dispersion.
    Liao HM; Zhou LQ; Zhang CX; Ouyang Q
    Phys Rev Lett; 2005 Dec; 95(23):238301. PubMed ID: 16384351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spiral defect drift in the wave fields of multiple excitation patterns.
    Dutta S; Steinbock O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056213. PubMed ID: 21728636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spiral formation and degeneration in heterogeneous excitable media.
    Toth R; de Lacy Costello B; Stone C; Masere J; Adamatzky A; Bull L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):035101. PubMed ID: 19392004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elimination of a spiral wave pinned at an obstacle by a train of plane waves: Effect of diffusion between obstacles and surrounding media.
    Tanaka M; Hörning M; Kitahata H; Yoshikawa K
    Chaos; 2015 Oct; 25(10):103127. PubMed ID: 26520093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spirals in a reaction-diffusion system: Dependence of wave dynamics on excitability.
    Mahanta D; Das NP; Dutta S
    Phys Rev E; 2018 Feb; 97(2-1):022206. PubMed ID: 29548091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robustness of free and pinned spiral waves against breakup by electrical forcing in excitable chemical media.
    Phantu M; Sutthiopad M; Luengviriya J; Müller SC; Luengviriya C
    Phys Rev E; 2017 Apr; 95(4-1):042214. PubMed ID: 28505820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-organization of multiarmed spiral waves in excitable media.
    Ponboonjaroenchai B; Luengviriya J; Sutthiopad M; Wungmool P; Kumchaiseemak N; Müller SC; Luengviriya C
    Phys Rev E; 2019 Oct; 100(4-1):042203. PubMed ID: 31771004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spiral wave drift under optical feedback in cardiac tissue.
    Xia YX; Zhi XP; Li TC; Pan JT; Panfilov AV; Zhang H
    Phys Rev E; 2022 Aug; 106(2-1):024405. PubMed ID: 36109896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinematics of spiral waves under feedback-related spatial gradients.
    Wu N; Gao H; Ying H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066206. PubMed ID: 21230722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drift laws for spiral waves on curved anisotropic surfaces.
    Dierckx H; Brisard E; Verschelde H; Panfilov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012908. PubMed ID: 23944539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scroll wave meandering induced by phase difference in a three-dimensional excitable medium.
    Yang Z; Gao S; Ouyang Q; Wang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056209. PubMed ID: 23214859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transitions between orbits of resonance attractors for spiral waves.
    Kheowan OU; Zykov VS; Rangsiman O; Müller SC
    Phys Rev Lett; 2001 Mar; 86(10):2170-3. PubMed ID: 11289882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle.
    Pertsov AM; Davidenko JM; Salomonsz R; Baxter WT; Jalife J
    Circ Res; 1993 Mar; 72(3):631-50. PubMed ID: 8431989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoexcited chemical wave in the ruthenium-catalyzed Belousov-Zhabotinsky reaction.
    Nakata S; Matsushita M; Sato T; Suematsu NJ; Kitahata H; Amemiya T; Mori Y
    J Phys Chem A; 2011 Jul; 115(26):7406-12. PubMed ID: 21563834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel technique to initiate and investigate scroll waves in thin layers of the photosensitive Belousov-Zhabotinsky reaction.
    Azhand A; Buchholz R; Totz JF; Engel H
    Eur Phys J E Soft Matter; 2016 Jun; 39(6):61. PubMed ID: 27329535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pattern formation of coupled spiral waves in bilayer systems: rich dynamics and high-frequency dominance.
    Nie H; Gao J; Zhan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056204. PubMed ID: 22181481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Filament Tension and Phase Locking of Meandering Scroll Waves.
    Dierckx H; Biktasheva IV; Verschelde H; Panfilov AV; Biktashev VN
    Phys Rev Lett; 2017 Dec; 119(25):258101. PubMed ID: 29303350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. External forcing of spiral waves.
    Zykov VS; Steinbock O; Muller SC
    Chaos; 1994 Sep; 4(3):509-518. PubMed ID: 12780127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spiral wave drift induced by stimulating wave trains.
    Gottwald G; Pumir A; Krinsky V
    Chaos; 2001 Sep; 11(3):487-494. PubMed ID: 12779486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.