These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11970582)

  • 1. Computation of the Lyapunov spectrum for continuous-time dynamical systems and discrete maps.
    Janaki TM; Rangarajan G; Habib S; Ryne RD
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt A):6614-26. PubMed ID: 11970582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
    Ott W; Rivas MA; West J
    J Stat Phys; 2015 Dec; 161(5):1098-1111. PubMed ID: 28066028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents.
    Salceanu PL
    Math Biosci Eng; 2011 Jul; 8(3):807-25. PubMed ID: 21675812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lyapunov exponents computation for hybrid neurons.
    Bizzarri F; Brambilla A; Gajani GS
    J Comput Neurosci; 2013 Oct; 35(2):201-12. PubMed ID: 23463130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New method for computing finite-time Lyapunov exponents.
    Okushima T
    Phys Rev Lett; 2003 Dec; 91(25):254101. PubMed ID: 14754118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems.
    Carretero-Gonzalez R; Orstavik S; Huke J; Broomhead DS; Stark J
    Chaos; 1999 Jun; 9(2):466-482. PubMed ID: 12779843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative algorithm for the computation of Lyapunov spectra of dynamical systems.
    Ramasubramanian K; Sriram MS
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt A):R1126-9. PubMed ID: 11969934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-space Lyapunov exponents and pseudochaos.
    Kocarev L; Szczepanski J
    Phys Rev Lett; 2004 Dec; 93(23):234101. PubMed ID: 15601163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the bound of the Lyapunov exponents for the fractional differential systems.
    Li C; Gong Z; Qian D; Chen Y
    Chaos; 2010 Mar; 20(1):013127. PubMed ID: 20370282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled test for predictive power of Lyapunov exponents: their inability to predict epileptic seizures.
    Lai YC; Harrison MA; Frei MG; Osorio I
    Chaos; 2004 Sep; 14(3):630-42. PubMed ID: 15446973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity.
    Barreira L; Pesin Y; Schmeling J
    Chaos; 1997 Mar; 7(1):27-38. PubMed ID: 12779635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy methods for sums of Lyapunov exponents for dilute gases.
    Dorfman JR; Latz A; Van Beijeren H
    Chaos; 1998 Jun; 8(2):444-454. PubMed ID: 12779747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application.
    Liu HF; Yang YZ; Dai ZH; Yu ZH
    Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A practical approach to computing Lyapunov exponents of renewal and delay equations.
    Breda D; Liessi D
    Math Biosci Eng; 2024 Jan; 21(1):1249-1269. PubMed ID: 38303463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative Methods of the Largest Lyapunov Exponent Estimation with Applications to the Stability Analyses Based on the Dynamical Maps-Introduction to the Method.
    Dabrowski A; Sagan T; Denysenko V; Balcerzak M; Zarychta S; Stefanski A
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lyapunov spectrum of the many-dimensional dilute random Lorentz gas.
    de Wijn AS; Beijeren Hv
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036209. PubMed ID: 15524614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying Chaos by Various Computational Methods. Part 1: Simple Systems.
    Awrejcewicz J; Krysko AV; Erofeev NP; Dobriyan V; Barulina MA; Krysko VA
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing dynamics with covariant Lyapunov vectors.
    Ginelli F; Poggi P; Turchi A; Chaté H; Livi R; Politi A
    Phys Rev Lett; 2007 Sep; 99(13):130601. PubMed ID: 17930570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetry of Lyapunov exponents in bifurcation structures of one-dimensional maps.
    Shimada Y; Takagi E; Ikeguchi T
    Chaos; 2016 Dec; 26(12):123119. PubMed ID: 28039982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems.
    Kanno K; Uchida A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032918. PubMed ID: 24730924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.