These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11970657)

  • 21. Melting of a quasi-two-dimensional metallic system.
    Chekmarev DS; Oxtoby DW; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051502. PubMed ID: 11414904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct observation of melting in a two-dimensional driven granular system.
    Sun X; Li Y; Ma Y; Zhang Z
    Sci Rep; 2016 Apr; 6():24056. PubMed ID: 27052190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystallization of bidisperse repulsive colloids in two-dimensional space: a study of model systems constructed at the air-water interface.
    Hur J; Mahynski NA; Won YY
    Langmuir; 2010 Jul; 26(14):11737-49. PubMed ID: 20527939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melting of two-dimensional tunable-diameter colloidal crystals.
    Han Y; Ha NY; Alsayed AM; Yodh AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041406. PubMed ID: 18517616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal nuclei and structural correlations in two-dimensional colloidal mixtures: experiment versus simulation.
    Assoud L; Ebert F; Keim P; Messina R; Maret G; Löwen H
    J Phys Condens Matter; 2009 Nov; 21(46):464114. PubMed ID: 21715878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Melting in two-dimensional Yukawa systems: a Brownian dynamics simulation.
    Qi WK; Wang Z; Han Y; Chen Y
    J Chem Phys; 2010 Dec; 133(23):234508. PubMed ID: 21186876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulation of compression-induced solid-to-solid phase transitions in colloidal monolayers.
    Sun J; Stirner T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051107. PubMed ID: 12786134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct visualization of three-dimensional crystallization behavior in microgels.
    Muluneh M; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021405. PubMed ID: 22463210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions.
    Faunce CA; Reichelt H; Paradies HH; Quitschau P; Zimmermann K
    J Chem Phys; 2005 Jun; 122(21):214727. PubMed ID: 15974782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local-heterogeneous responses and transient dynamics of cage breaking and formation in colloidal fluids.
    Nag P; Teramoto H; Li CB; Terdik JZ; Scherer NF; Komatsuzaki T
    J Chem Phys; 2014 Sep; 141(10):104907. PubMed ID: 25217951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Eighth Liquid Matter Conference.
    Dellago C; Kahl G; Likos CN
    J Phys Condens Matter; 2012 Jul; 24(28):280301. PubMed ID: 22740596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melting of a confined monolayer of magnetized beads.
    Schockmel J; Mersch E; Vandewalle N; Lumay G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062201. PubMed ID: 23848665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase behavior of charged colloids at a fluid interface.
    Kelleher CP; Guerra RE; Hollingsworth AD; Chaikin PM
    Phys Rev E; 2017 Feb; 95(2-1):022602. PubMed ID: 28297978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Divergence of the long-wavelength collective diffusion coefficient in quasi-one- and quasi-two-dimensional colloidal suspensions.
    Lin B; Cui B; Xu X; Zangi R; Diamant H; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022303. PubMed ID: 25353468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitatively mimicking wet colloidal suspensions with dry granular media.
    Messina R; Aljawhari S; Bécu L; Schockmel J; Lumay G; Vandewalle N
    Sci Rep; 2015 Jun; 5():10348. PubMed ID: 26030718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple-step melting in two-dimensional hexatic liquid-crystal films.
    Chou CF; Jin AJ; Hui SW; Huang CC; Ho JT
    Science; 1998 May; 280(5368):1424-6. PubMed ID: 9603729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colloidal phase transition driven by alternating electric field.
    Liu Y; Narayanan J; Liu XY
    J Chem Phys; 2006 Mar; 124(12):124906. PubMed ID: 16599724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How does a thermal binary crystal break under shear?
    Horn T; Löwen H
    J Chem Phys; 2014 Dec; 141(22):224505. PubMed ID: 25494758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disorder-induced enhancement of local hexatic correlations in two-dimensional fluids.
    Shankaraiah N; Sengupta S; Menon GI
    J Phys Condens Matter; 2020 May; 32(18):184003. PubMed ID: 31931491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.