These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11970674)

  • 1. Simple model to study insertion of a protein into a membrane.
    Bonaccini R; Seno F
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7290-8. PubMed ID: 11970674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment.
    MacCallum JL; Bennett WF; Tieleman DP
    J Gen Physiol; 2007 May; 129(5):371-7. PubMed ID: 17438118
    [No Abstract]   [Full Text] [Related]  

  • 3. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers.
    Moon CP; Fleming KG
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10174-7. PubMed ID: 21606332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossing the hydrophobic barrier: insertion of membrane proteins.
    Engelman DM
    Science; 1996 Dec; 274(5294):1850-1. PubMed ID: 8984645
    [No Abstract]   [Full Text] [Related]  

  • 5. Experimental measures of amino acid hydrophobicity and the topology of transmembrane and globular proteins.
    Wolfenden R
    J Gen Physiol; 2007 May; 129(5):357-62. PubMed ID: 17438117
    [No Abstract]   [Full Text] [Related]  

  • 6. How translocons select transmembrane helices.
    White SH; von Heijne G
    Annu Rev Biophys; 2008; 37():23-42. PubMed ID: 18573071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane proteins: molecular dynamics simulations.
    Lindahl E; Sansom MS
    Curr Opin Struct Biol; 2008 Aug; 18(4):425-31. PubMed ID: 18406600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hydrophobic mismatching on membrane protein diffusion.
    Guigas G; Weiss M
    Biophys J; 2008 Aug; 95(3):L25-7. PubMed ID: 18502792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes.
    Stansfeld PJ; Goose JE; Caffrey M; Carpenter EP; Parker JL; Newstead S; Sansom MS
    Structure; 2015 Jul; 23(7):1350-61. PubMed ID: 26073602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrypting protein insertion through the translocon with free-energy calculations.
    Gumbart JC; Chipot C
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1663-71. PubMed ID: 26896694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving coarse-grained models of protein folding through weighting of polar-polar/hydrophobic-hydrophobic interactions into crowded spaces.
    Beltrán HI; Alas-Guardado SJ; González-Pérez PP
    J Mol Model; 2022 Mar; 28(4):87. PubMed ID: 35262807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins.
    Venturoli M; Smit B; Sperotto MM
    Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane peptide-induced lipid sorting and mechanism of Lalpha-to-inverted phase transition using coarse-grain molecular dynamics.
    Nielsen SO; Lopez CF; Ivanov I; Moore PB; Shelley JC; Klein ML
    Biophys J; 2004 Oct; 87(4):2107-15. PubMed ID: 15454415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-induced conformational change of proteins.
    Sui SF
    Adv Colloid Interface Sci; 2000 Mar; 85(2-3):257-67. PubMed ID: 10768483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein Folding Prediction in a Cubic Lattice in Hydrophobic-Polar Model.
    Yanev N; Traykov M; Milanov P; Yurukov B
    J Comput Biol; 2017 May; 24(5):412-421. PubMed ID: 27901606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model.
    Barbosa MA; Garcia LG; Pereira de Araújo AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051903. PubMed ID: 16383641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide.
    Polyansky AA; Volynsky PE; Arseniev AS; Efremov RG
    J Phys Chem B; 2009 Jan; 113(4):1107-19. PubMed ID: 19125640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of a lipidic alpha amino acid: solubility and interaction with serum albumin and lipid bilayers.
    Filipe HA; Coreta-Gomes FM; Velazquez-Campoy A; Almeida AR; Peixoto AF; Pereira MM; Vaz WL; Moreno MJ
    J Phys Chem B; 2013 Apr; 117(13):3439-48. PubMed ID: 23477590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semisynthetic proteins: model systems for the study of the insertion of hydrophobic peptides into preformed lipid bilayers.
    Moll TS; Thompson TE
    Biochemistry; 1994 Dec; 33(51):15469-82. PubMed ID: 7528536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.