These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11970728)

  • 21. Low levels of reactive oxygen species as modulators of cell function.
    Remacle J; Raes M; Toussaint O; Renard P; Rao G
    Mutat Res; 1995 Feb; 316(3):103-22. PubMed ID: 7862174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis.
    Hsu TC; Young MR; Cmarik J; Colburn NH
    Free Radic Biol Med; 2000 May; 28(9):1338-48. PubMed ID: 10924853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma.
    Pawate S; Shen Q; Fan F; Bhat NR
    J Neurosci Res; 2004 Aug; 77(4):540-51. PubMed ID: 15264224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of redox potential and reactive oxygen species in stress signaling.
    Adler V; Yin Z; Tew KD; Ronai Z
    Oncogene; 1999 Nov; 18(45):6104-11. PubMed ID: 10557101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells - up regulation of Nrf2 expression and down regulation of NF-κB and COX-2.
    Ramyaa P; Krishnaswamy R; Padma VV
    Biochim Biophys Acta; 2014 Jan; 1840(1):681-92. PubMed ID: 24161694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox signaling in cancer biology.
    Gius D; Spitz DR
    Antioxid Redox Signal; 2006; 8(7-8):1249-52. PubMed ID: 16910772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Signal function of the reactive oxygen species in regulatory networks of the cell reaction to damaging effects: contribution of radiosensitivity and genome instability].
    Mikhaĭlov VF; Mazurik VK; Burlakova EB
    Radiats Biol Radioecol; 2003; 43(1):5-18. PubMed ID: 12677653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox signals that regulate the vascular response to injury.
    Berk BC
    Thromb Haemost; 1999 Aug; 82(2):810-7. PubMed ID: 10605787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide attenuates overexpression of Giα proteins in vascular smooth muscle cells from SHR: Role of ROS and ROS-mediated signaling.
    Sarkar O; Li Y; Anand-Srivastava MB
    PLoS One; 2017; 12(7):e0179301. PubMed ID: 28692698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitric oxide affects the production of reactive oxygen species in hepatoma cells: implications for the process of oxygen sensing.
    Genius J; Fandrey J
    Free Radic Biol Med; 2000 Sep; 29(6):515-21. PubMed ID: 11025195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Should I stay or should I go: beta-catenin decides under stress.
    Hoogeboom D; Burgering BM
    Biochim Biophys Acta; 2009 Dec; 1796(2):63-74. PubMed ID: 19268509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive oxygen species attenuate nitric-oxide-mediated hypoxia-inducible factor-1alpha stabilization.
    Köhl R; Zhou J; Brüne B
    Free Radic Biol Med; 2006 Apr; 40(8):1430-42. PubMed ID: 16631533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The role of oxidative stress in bladder cancer].
    Sawicka E; Lisowska A; Kowal P; Długosz A
    Postepy Hig Med Dosw (Online); 2015 Jul; 69():744-52. PubMed ID: 26206990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Role of free radicals in the physiological processes].
    Gałecka E; Mrowicka M; Malinowska K; Gałecki P
    Pol Merkur Lekarski; 2008 May; 24(143):446-8. PubMed ID: 18634393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer.
    Pathania D; Sechi M; Palomba M; Sanna V; Berrettini F; Sias A; Taheri L; Neamati N
    Biochim Biophys Acta; 2014 Jan; 1840(1):332-43. PubMed ID: 23954204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrosative stress and transcription.
    Kröncke KD
    Biol Chem; 2003; 384(10-11):1365-77. PubMed ID: 14669980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS.
    Zepeda AB; Pessoa A; Castillo RL; Figueroa CA; Pulgar VM; Farías JG
    Cell Biochem Funct; 2013 Aug; 31(6):451-9. PubMed ID: 23760768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats.
    Chu S; Mao X; Guo H; Wang L; Li Z; Zhang Y; Wang Y; Wang H; Zhang X; Peng W
    Free Radic Res; 2017 Mar; 51(3):237-252. PubMed ID: 28277985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free radicals, reactive oxygen species, oxidative stress and its classification.
    Lushchak VI
    Chem Biol Interact; 2014 Dec; 224():164-75. PubMed ID: 25452175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of Angiotensin II receptor signaling by cysteine modification of NF-κB.
    Nishida M; Kitajima N; Saiki S; Nakaya M; Kurose H
    Nitric Oxide; 2011 Aug; 25(2):112-7. PubMed ID: 21078404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.