These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11970849)

  • 1. Transcription factors regulating the response to oxidative stress in yeast.
    Moye-Rowley WS
    Antioxid Redox Signal; 2002 Feb; 4(1):123-40. PubMed ID: 11970849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress signalling to fungal stress-activated protein kinase pathways.
    Smith DA; Morgan BA; Quinn J
    FEMS Microbiol Lett; 2010 May; 306(1):1-8. PubMed ID: 20345377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast signaling pathways in the oxidative stress response.
    Ikner A; Shiozaki K
    Mutat Res; 2005 Jan; 569(1-2):13-27. PubMed ID: 15603750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of regulatory transcription factors in Schizosaccharomyces pombe and budding yeasts.
    Beskow A; Wright AP
    Yeast; 2006 Oct; 23(13):929-35. PubMed ID: 17072884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi.
    Montibus M; Pinson-Gadais L; Richard-Forget F; Barreau C; Ponts N
    Crit Rev Microbiol; 2015; 41(3):295-308. PubMed ID: 24041414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans.
    Lin SJ; Austriaco N
    FEMS Yeast Res; 2014 Feb; 14(1):119-35. PubMed ID: 24205865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata.
    Briones-Martin-Del-Campo M; Orta-Zavalza E; Juarez-Cepeda J; Gutierrez-Escobedo G; Cañas-Villamar I; Castaño I; De Las Peñas A
    Rev Iberoam Micol; 2014; 31(1):67-71. PubMed ID: 24270068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green tea polyphenols function as prooxidants to activate oxidative-stress-responsive transcription factors in yeasts.
    Maeta K; Nomura W; Takatsume Y; Izawa S; Inoue Y
    Appl Environ Microbiol; 2007 Jan; 73(2):572-80. PubMed ID: 17122395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress in yeast.
    Lushchak VI
    Biochemistry (Mosc); 2010 Mar; 75(3):281-96. PubMed ID: 20370606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress responses of the yeast Saccharomyces cerevisiae.
    Jamieson DJ
    Yeast; 1998 Dec; 14(16):1511-27. PubMed ID: 9885153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-activated signalling pathways in yeast.
    Toone WM; Jones N
    Genes Cells; 1998 Aug; 3(8):485-98. PubMed ID: 9797451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2.
    Roux AE; Quissac A; Chartrand P; Ferbeyre G; Rokeach LA
    Aging Cell; 2006 Aug; 5(4):345-57. PubMed ID: 16822282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways.
    Gónzalez-Párraga P; Alonso-Monge R; Plá J; Argüelles JC
    FEMS Yeast Res; 2010 Sep; 10(6):747-56. PubMed ID: 20608985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidant-specific regulation of protein synthesis in Candida albicans.
    Sundaram A; Grant CM
    Fungal Genet Biol; 2014 Jun; 67():15-23. PubMed ID: 24699161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAPK cell-cycle regulation in Saccharomyces cerevisiae and Candida albicans.
    Correia I; Alonso-Monge R; Pla J
    Future Microbiol; 2010 Jul; 5(7):1125-41. PubMed ID: 20632810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of Cor33p, a novel protein implicated in tolerance towards oxidative stress in Candida albicans.
    Sohn K; Roehm M; Urban C; Saunders N; Rothenstein D; Lottspeich F; Schröppel K; Brunner H; Rupp S
    Eukaryot Cell; 2005 Dec; 4(12):2160-9. PubMed ID: 16339733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans.
    Wang Y; Cao YY; Jia XM; Cao YB; Gao PH; Fu XP; Ying K; Chen WS; Jiang YY
    Free Radic Biol Med; 2006 Apr; 40(7):1201-9. PubMed ID: 16545688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast metallothionein gene expression in response to metals and oxidative stress.
    Liu XD; Thiele DJ
    Methods; 1997 Mar; 11(3):289-99. PubMed ID: 9073572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of the environmental stress response in ascomycete fungi.
    Gasch AP
    Yeast; 2007 Nov; 24(11):961-76. PubMed ID: 17605132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism.
    Cao Y; Huang S; Dai B; Zhu Z; Lu H; Dong L; Cao Y; Wang Y; Gao P; Chai Y; Jiang Y
    Fungal Genet Biol; 2009 Feb; 46(2):183-9. PubMed ID: 19049890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.