BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11971679)

  • 1. Posttranslational alanine trans-stimulation of zwitterionic amino acid transport systems in human intestinal Caco-2 cells.
    Pan M; Souba WW; Wolfgang CL; Karinch AM; Stevens BR
    J Surg Res; 2002 May; 104(1):63-9. PubMed ID: 11971679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H+-zwitterionic amino acid symport at the brush-border membrane of human intestinal epithelial (CACO-2) cells.
    Thwaites DT; Stevens BC
    Exp Physiol; 1999 Mar; 84(2):275-84. PubMed ID: 10226170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of a Na+-dependent neutral amino acid transporter, ASCT1, in rabbit corneal epithelial cell culture and rabbit cornea.
    Katragadda S; Talluri RS; Pal D; Mitra AK
    Curr Eye Res; 2005 Nov; 30(11):989-1002. PubMed ID: 16282133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indirect regulation of the intestinal H+-coupled amino acid transporter hPAT1 (SLC36A1).
    Anderson CM; Thwaites DT
    J Cell Physiol; 2005 Aug; 204(2):604-13. PubMed ID: 15754324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEPT1-mediated uptake of dipeptides enhances the intestinal absorption of amino acids via transport system b(0,+).
    Wenzel U; Meissner B; Döring F; Daniel H
    J Cell Physiol; 2001 Feb; 186(2):251-9. PubMed ID: 11169462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells.
    Mitsuoka K; Shirasaka Y; Fukushi A; Sato M; Nakamura T; Nakanishi T; Tamai I
    Biopharm Drug Dispos; 2009 Apr; 30(3):126-37. PubMed ID: 19322909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional expression and adaptive regulation of Na+ -dependent neutral amino acid transporter SNAT2/ATA2 in normal human astrocytes under amino acid starved condition.
    Tanaka K; Yamamoto A; Fujita T
    Neurosci Lett; 2005 Apr; 378(2):70-5. PubMed ID: 15774260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization and cloning of amino acid transporter B(0,+) (ATB(0,+)) in primary cultured rat pneumocytes.
    Uchiyama T; Fujita T; Gukasyan HJ; Kim KJ; Borok Z; Crandall ED; Lee VH
    J Cell Physiol; 2008 Mar; 214(3):645-54. PubMed ID: 17960566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland.
    Tovar AR; Avila E; DeSantiago S; Torres N
    Metabolism; 2000 Jul; 49(7):873-9. PubMed ID: 10909998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multicomponent analysis of amino acid transport systems in human lymphocytes. 1. Kinetic parameters of the A and L systems and pathways of uptake of naturally occurring amino acids in blood lymphocytes.
    Segel GB; Simon W; Lichtman MA
    J Cell Physiol; 1983 Sep; 116(3):372-8. PubMed ID: 6604062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.
    Nielsen CU; Carstensen M; Brodin B
    Eur J Pharm Biopharm; 2012 Jun; 81(2):458-62. PubMed ID: 22452873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and uptake of nateglinide in Caco-2 cells and its inhibitory effect on human monocarboxylate transporter MCT1.
    Okamura A; Emoto A; Koyabu N; Ohtani H; Sawada Y
    Br J Pharmacol; 2002 Oct; 137(3):391-9. PubMed ID: 12237260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+ and pH dependence of proline and beta-alanine absorption in rat small intestine.
    Iñigo C; Barber A; Lostao MP
    Acta Physiol (Oxf); 2006 Apr; 186(4):271-8. PubMed ID: 16634782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IGF regulation of neutral amino acid transport in the BeWo choriocarcinoma cell line (b30 clone): evidence for MAP kinase-dependent and MAP kinase-independent mechanisms.
    Fang J; Mao D; Smith CH; Fant ME
    Growth Horm IGF Res; 2006; 16(5-6):318-25. PubMed ID: 17035059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutral amino acid transport in human synovial cells: substrate specificity of adaptative regulation and transinhibition.
    Aussel C; Rousseau-Loric S; Cynober L; Agneray J; Ekindjian OG
    J Cell Physiol; 1989 Oct; 141(1):103-10. PubMed ID: 2777895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive regulation of neutral amino acid transport System A in rat H4 hepatoma cells.
    Kilberg MS; Han HP; Barber EF; Chiles TC
    J Cell Physiol; 1985 Feb; 122(2):290-8. PubMed ID: 2578476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-Proline transport into renal OK epithelial cells: a second renal proline transport system is induced by amino acid deprivation.
    Nickel A; Klein U; Weitz D; Daniel H
    Amino Acids; 2010 Mar; 38(3):753-61. PubMed ID: 19333719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of transport in mammalian cell culture.
    Oxender DL; Lee M; Cecchini G
    Prog Clin Biol Res; 1976; 9():41-7. PubMed ID: 1025575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms and kinetics of citrulline uptake in a model of human intestinal epithelial cells.
    Bahri S; Curis E; El Wafi FZ; Aussel C; Chaumeil JC; Cynober L; Zerrouk N
    Clin Nutr; 2008 Dec; 27(6):872-80. PubMed ID: 18834650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of L-alpha-methyldopa in cultured human intestinal epithelial (Caco-2) cell monolayers. Comparison with metabolism in vivo.
    Chikhale PJ; Borchardt RT
    Drug Metab Dispos; 1994; 22(4):592-600. PubMed ID: 7956735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.