These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 11971715)
1. 7-N-(mercaptoalkyl)mitomycins: implications of cyclization for drug function. Na Y; Wang S; Kohn H J Am Chem Soc; 2002 May; 124(17):4666-77. PubMed ID: 11971715 [TBL] [Abstract][Full Text] [Related]
2. Design and synthesis of new mitomycin dimers containing a seven-membered cyclic disulfide and a diol linkers. Kim JJ; Kim HR; Arai H; Lee SH Arch Pharm Res; 2012 Aug; 35(8):1413-20. PubMed ID: 22941484 [TBL] [Abstract][Full Text] [Related]
3. Selective activation of mitomycin A by thiols to form DNA cross-links and monoadducts: biochemical basis for the modulation of mitomycin cytotoxicity by the quinone redox potential. Paz MM; Das A; Palom Y; He QY; Tomasz M J Med Chem; 2001 Aug; 44(17):2834-42. PubMed ID: 11495594 [TBL] [Abstract][Full Text] [Related]
4. Reductive activation of mitomycin A by thiols. Paz MM; Tomasz M Org Lett; 2001 Sep; 3(18):2789-92. PubMed ID: 11529757 [TBL] [Abstract][Full Text] [Related]
5. Studies on the mode of action of mitomycin C(7) aminoethylene disulfides (BMS-181174 and KW-2149): reactivity of 7-N-(mercaptoethyl)mitomycin C. Wang S; Kohn H J Med Chem; 1999 Mar; 42(5):788-90. PubMed ID: 10072677 [No Abstract] [Full Text] [Related]
6. Synthesis and mechanistic studies of a mitomycin dimer containing an eight-membered cyclic disulfide. Park HJ; Kim JJ; Kim HR; Lee EK; Kim ES; Jeong CS; Moon A; Lee SH Bioorg Med Chem; 2011 Jul; 19(13):4004-13. PubMed ID: 21658959 [TBL] [Abstract][Full Text] [Related]
7. Reaction of reductively activated mitomycin C with aqueous bicarbonate: Isolation and characterization of an oxazolidinone derivative of cis-1-hydroxy-2,7-diaminomitosene. Paz MM Bioorg Med Chem Lett; 2010 Jan; 20(1):31-4. PubMed ID: 19954979 [TBL] [Abstract][Full Text] [Related]
8. 7-N,7'-N'-(1",2"-Dithianyl-3",6"-dimethylenyl)bismitomycin C: synthesis and nucleophilic activation of a dimeric mitomycin. Lee SH; Kohn H Org Biomol Chem; 2005 Feb; 3(3):471-82. PubMed ID: 15678185 [TBL] [Abstract][Full Text] [Related]
9. Development of new mitomycin C and porfiromycin analogues. Iyengar BS; Lin HJ; Cheng L; Remers WA; Bradner WT J Med Chem; 1981 Aug; 24(8):975-81. PubMed ID: 7328599 [TBL] [Abstract][Full Text] [Related]
10. Synthesis, DNA cross-linking activity, and cytotoxicity of dimeric mitomycins. Na Y; Li VS; Nakanishi Y; Bastow KF; Kohn H J Med Chem; 2001 Oct; 44(21):3453-62. PubMed ID: 11585450 [TBL] [Abstract][Full Text] [Related]
11. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics. Pritsos CA; Sartorelli AC Cancer Res; 1986 Jul; 46(7):3528-32. PubMed ID: 3011250 [TBL] [Abstract][Full Text] [Related]
12. Design, synthesis, and evaluation of mitomycin-tethered phosphorothioate oligodeoxynucleotides. Huh N; Rege AA; Yoo B; Kogan TP; Kohn H Bioconjug Chem; 1996; 7(6):659-69. PubMed ID: 8950485 [TBL] [Abstract][Full Text] [Related]
13. Studies on activation mechanism of a mitomycin dimer, 7-N,7'-N'-(1″,2″-dithiepanyl-3″,7″-dimethylenyl)bismitomycin C. Kim JJ; Kim HR; Lee SH Arch Pharm Res; 2012 Sep; 35(9):1629-37. PubMed ID: 23054720 [TBL] [Abstract][Full Text] [Related]
14. Cytotoxicity and DNA lesions produced by mitomycin C and porfiromycin in hypoxic and aerobic EMT6 and Chinese hamster ovary cells. Fracasso PM; Sartorelli AC Cancer Res; 1986 Aug; 46(8):3939-44. PubMed ID: 3089583 [TBL] [Abstract][Full Text] [Related]
15. Mitomycin C and porfiromycin analogues with substituted ethylamines at position 7. Iyengar BS; Sami SM; Remers WA; Bradner WT; Schurig JE J Med Chem; 1983 Jan; 26(1):16-20. PubMed ID: 6827524 [TBL] [Abstract][Full Text] [Related]
16. Reductive activation of mitomycin C by thiols: kinetics, mechanism, and biological implications. Paz MM Chem Res Toxicol; 2009 Oct; 22(10):1663-8. PubMed ID: 19791750 [TBL] [Abstract][Full Text] [Related]
17. Cyclic Thiosulfinates and Cyclic Disulfides Selectively Cross-Link Thiols While Avoiding Modification of Lone Thiols. Donnelly DP; Dowgiallo MG; Salisbury JP; Aluri KC; Iyengar S; Chaudhari M; Mathew M; Miele I; Auclair JR; Lopez SA; Manetsch R; Agar JN J Am Chem Soc; 2018 Jun; 140(24):7377-7380. PubMed ID: 29851341 [TBL] [Abstract][Full Text] [Related]
18. MITOMYCINS AND PORFIROMYCIN: CHEMICAL MECHANISM OF ACTIVATION AND CROSS-LINKING OF DNA. IYER VN; SZYBALSKI W Science; 1964 Jul; 145(3627):55-8. PubMed ID: 14162693 [TBL] [Abstract][Full Text] [Related]
19. Thiol-Disulfide Exchange in Human Growth Hormone. Chandrasekhar S; Moorthy BS; Xie R; Topp EM Pharm Res; 2016 Jun; 33(6):1370-82. PubMed ID: 26887678 [TBL] [Abstract][Full Text] [Related]
20. Differential toxicity of mitomycin C and porfiromycin to aerobic and hypoxic Chinese hamster ovary cells overexpressing human NADPH:cytochrome c (P-450) reductase. Belcourt MF; Hodnick WF; Rockwell S; Sartorelli AC Proc Natl Acad Sci U S A; 1996 Jan; 93(1):456-60. PubMed ID: 8552660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]