BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11971744)

  • 1. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO(2) electrode.
    He J; Benkö G; Korodi F; Polívka T; Lomoth R; Akermark B; Sun L; Hagfeldt A; Sundström V
    J Am Chem Soc; 2002 May; 124(17):4922-32. PubMed ID: 11971744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of sterically hindered phthalocyanines and their applications to dye-sensitized solar cells.
    Eu S; Katoh T; Umeyama T; Matano Y; Imahori H
    Dalton Trans; 2008 Oct; (40):5476-83. PubMed ID: 19082031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells.
    Cid JJ; García-Iglesias M; Yum JH; Forneli A; Albero J; Martínez-Ferrero E; Vázquez P; Grätzel M; Nazeeruddin MK; Palomares E; Torres T
    Chemistry; 2009; 15(20):5130-7. PubMed ID: 19338034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells.
    Hara K; Dan-oh Y; Kasada C; Ohga Y; Shinpo A; Suga S; Sayama K; Arakawa H
    Langmuir; 2004 May; 20(10):4205-10. PubMed ID: 15969418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films.
    Green AN; Palomares E; Haque SA; Kroon JM; Durrant JR
    J Phys Chem B; 2005 Jun; 109(25):12525-33. PubMed ID: 16852549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells.
    Hara K; Wang ZS; Sato T; Furube A; Katoh R; Sugihara H; Dan-Oh Y; Kasada C; Shinpo A; Suga S
    J Phys Chem B; 2005 Aug; 109(32):15476-82. PubMed ID: 16852963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps.
    Griffith MJ; Sunahara K; Wagner P; Wagner K; Wallace GG; Officer DL; Furube A; Katoh R; Mori S; Mozer AJ
    Chem Commun (Camb); 2012 May; 48(35):4145-62. PubMed ID: 22441329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distance and driving force dependencies of electron injection and recombination dynamics in organic dye-sensitized solar cells.
    Wiberg J; Marinado T; Hagberg DP; Sun L; Hagfeldt A; Albinsson B
    J Phys Chem B; 2010 Nov; 114(45):14358-63. PubMed ID: 20380364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method to protect charge recombination in the back-contact dye-sensitized solar cell.
    Yoo B; Kim KJ; Lee DK; Kim K; Ko MJ; Kim YH; Kim WM; Park NG
    Opt Express; 2010 Sep; 18 Suppl 3():A395-402. PubMed ID: 21165069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of zinc phthalocyanine with large steric hindrance and its photovoltaic performance for dye-sensitized solar cells.
    Lin L; Peng B; Shi W; Guo Y; Li R
    Dalton Trans; 2015 Mar; 44(12):5867-74. PubMed ID: 25716344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium sensitizer with a thienylvinylbipyridyl ligand for dye-sensitized solar cells.
    Yu Z; Najafabadi HM; Xu Y; Nonomura K; Sun L; Kloo L
    Dalton Trans; 2011 Sep; 40(33):8361-6. PubMed ID: 21769336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells.
    Koops SE; O'Regan BC; Barnes PR; Durrant JR
    J Am Chem Soc; 2009 Apr; 131(13):4808-18. PubMed ID: 19334776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mg(OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells.
    Gao R; Wang L; Ma B; Zhan C; Qiu Y
    Langmuir; 2010 Feb; 26(4):2460-5. PubMed ID: 19856906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supersensitization of CdS quantum dots with a near-infrared organic dye: toward the design of panchromatic hybrid-sensitized solar cells.
    Choi H; Nicolaescu R; Paek S; Ko J; Kamat PV
    ACS Nano; 2011 Nov; 5(11):9238-45. PubMed ID: 21961965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity.
    Klein C; Nazeeruddin MK; Liska P; Di Censo D; Hirata N; Palomares E; Durrant JR; Grätzel M
    Inorg Chem; 2005 Jan; 44(2):178-80. PubMed ID: 15651860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of electrolytes on charge recombination in dye-sensitized TiO(2) solar cell (1): the case of solar cells using the I(-)/I(3)(-) redox couple.
    Nakade S; Kanzaki T; Kubo W; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2005 Mar; 109(8):3480-7. PubMed ID: 16851382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.