BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11971866)

  • 1. Several polylactosamine-modifying glycosyltransferases also use internal GalNAcbeta1-4GlcNAc units of synthetic saccharides as acceptors.
    Salo H; Aitio O; Ilves K; Bencomo E; Toivonen S; Penttilä L; Niemelä R; Salminen H; Grabenhorst E; Renkonen R; Renkonen O
    Glycobiology; 2002 Mar; 12(3):217-28. PubMed ID: 11971866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel poly-GalNAcbeta1-4GlcNAc (LacdiNAc) and fucosylated poly-LacdiNAc N-glycans from mammalian cells expressing beta1,4-N-acetylgalactosaminyltransferase and alpha1,3-fucosyltransferase.
    Kawar ZS; Haslam SM; Morris HR; Dell A; Cummings RD
    J Biol Chem; 2005 Apr; 280(13):12810-9. PubMed ID: 15653684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic midchain branching of polylactosamine backbones is restricted in a site-specific manner in alpha 1,3-fucosylated chains.
    Leppänen A; Niemelä R; Renkonen O
    Biochemistry; 1997 Nov; 36(44):13729-35. PubMed ID: 9354644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of linear polylactosamines containing one and two site-specifically positioned Lewis x determinants: WGA agarose chromatography in fractionation of mixtures generated by random, partial enzymatic alpha3-fucosylation of pure polylactosamines.
    Niemelä R; Natunen J; Penttilä L; Salminen H; Helin J; Maaheimo H; Costello CE; Renkonen O
    Glycobiology; 1999 May; 9(5):517-26. PubMed ID: 10207184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acceptor and site specificity of alpha 3-fucosyltransferase V. High reactivity of the proximal and low of the distal galbeta 1-4GlcNAc unit in i-type polylactosamines.
    Pykäri M; Toivonen S; Natunen J; Niemela R; Salminen H; Aitio O; Ekström M; Parmanne P; Välimäki M; Alais J; Augé C; Lowe JB; Renkonen O; Renkonen R
    J Biol Chem; 2000 Dec; 275(51):40057-63. PubMed ID: 11007797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of branched polylactosaminoglycans. Embryonal carcinoma cells express midchain beta1,6-N-acetylglucosaminyltransferase activity that generates branches to preformed linear backbones.
    Leppänen A; Zhu Y; Maaheimo H; Helin J; Lehtonen E; Renkonen O
    J Biol Chem; 1998 Jul; 273(28):17399-405. PubMed ID: 9651325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosyltransferases in chemo-enzymatic synthesis of oligosaccharides.
    Tefsen B; van Die I
    Methods Mol Biol; 2013; 1022():357-67. PubMed ID: 23765675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human alpha3-fucosyltransferases convert chitin oligosaccharides to products containing a GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-4R determinant at the nonreducing terminus.
    Natunen J; Aitio O; Helin J; Maaheimo H; Niemelä R; Heikkinen S; Renkonen O
    Glycobiology; 2001 Mar; 11(3):209-16. PubMed ID: 11320059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fucosylation of disaccharide precursors of sialyl LewisX inhibit selectin-mediated cell adhesion.
    Sarkar AK; Rostand KS; Jain RK; Matta KL; Esko JD
    J Biol Chem; 1997 Oct; 272(41):25608-16. PubMed ID: 9325281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of UDP-GlcNAc:Galbeta1-4GlcNAcbeta1-3*Galbeta1-4Glc(NAc)-R(GlcNAc to *Gal) beta1,6N-acetylglucosaminyltransferase from hog small intestine.
    Sakamoto Y; Taguchi T; Tano Y; Ogawa T; Leppänen A; Kinnunen M; Aitio O; Parmanne P; Renkonen O; Taniguchi N
    J Biol Chem; 1998 Oct; 273(42):27625-32. PubMed ID: 9765297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The centrally acting beta1,6N-acetylglucosaminyltransferase (GlcNAc to gal). Functional expression, purification, and acceptor specificity of a human enzyme involved in midchain branching of linear poly-N-acetyllactosamines.
    Mattila P; Salminen H; Hirvas L; Niittymäki J; Salo H; Niemelä R; Fukuda M; Renkonen O; Renkonen R
    J Biol Chem; 1998 Oct; 273(42):27633-9. PubMed ID: 9765298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic synthesis of natural and 13C enriched linear poly-N-acetyllactosamines as ligands for galectin-1.
    Di Virgilio S; Glushka J; Moremen K; Pierce M
    Glycobiology; 1999 Apr; 9(4):353-64. PubMed ID: 10089209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fuc-TIX: a versatile alpha1,3-fucosyltransferase with a distinct acceptor- and site-specificity profile.
    Toivonen S; Nishihara S; Narimatsu H; Renkonen O; Renkonen R
    Glycobiology; 2002 Jun; 12(6):361-8. PubMed ID: 12107078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic synthesis of poly-N-acetyllactosamines as potential substrates for endo-beta-galactosidase-catalyzed hydrolytic and transglycosylation reactions.
    Murata T; Honda H; Hattori T; Usui T
    Biochim Biophys Acta; 2005 Feb; 1722(1):60-8. PubMed ID: 15716127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of oligomeric beta-glycosides from cellulose and hemicellulosic polysaccharides via the glycosyl transferase activity of a trichoderma reesei cellulase.
    York WS; Hawkins R
    Glycobiology; 2000 Feb; 10(2):193-201. PubMed ID: 10642611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific detection of sialyl Lewis X determinant carried on the mucin GlcNAcbeta1-->6GalNAcalpha core structure as a tumor-associated antigen.
    Kumamoto K; Mitsuoka C; Izawa M; Kimura N; Otsubo N; Ishida H; Kiso M; Yamada T; Hirohashi S; Kannagi R
    Biochem Biophys Res Commun; 1998 Jun; 247(2):514-7. PubMed ID: 9642161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfation of sialyl N-acetyllactosamine oligosaccharides and fetuin oligosaccharides by keratan sulfate Gal-6-sulfotransferase.
    Torii T; Fukuta M; Habuchi O
    Glycobiology; 2000 Feb; 10(2):203-11. PubMed ID: 10642612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First evidence for occurrence of Galbeta1-3GlcNAcbeta1-4Man unit in N-glycans of insect glycoprotein: beta1-3Gal and beta1-4GlcNAc transferases are involved in N-glycan processing of royal jelly glycoproteins.
    Kimura Y; Tsumura K; Kimura M; Okihara K; Sugimoto H; Yamada H
    Biosci Biotechnol Biochem; 2003 Aug; 67(8):1852-6. PubMed ID: 12951530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro biosynthesis of a decasaccharide prototype of multiply branched polylactosaminoglycan backbones.
    Leppanen A; Salminen H; Zhu Y; Maaheimo H; Helin J; Costello CE; Renkonen O
    Biochemistry; 1997 Jun; 36(23):7026-36. PubMed ID: 9188700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the specificities of human blood group H gene-specified alpha 1,2-L-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: evidence for an inverse relationship between alpha 1,2-L-fucosylation of Gal and alpha 1,6-L-fucosylation of asparagine-linked GlcNAc.
    Chandrasekaran EV; Jain RK; Larsen RD; Wlasichuk K; Matta KL
    Biochemistry; 1996 Jul; 35(27):8914-24. PubMed ID: 8688427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.