BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11971921)

  • 1. Legume embryos develop in a hypoxic environment.
    Rolletschek H; Borisjuk L; Koschorreck M; Wobus U; Weber H
    J Exp Bot; 2002 May; 53(371):1099-107. PubMed ID: 11971921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy status and its control on embryogenesis of legumes. Embryo photosynthesis contributes to oxygen supply and is coupled to biosynthetic fluxes.
    Rolletschek H; Weber H; Borisjuk L
    Plant Physiol; 2003 Jul; 132(3):1196-206. PubMed ID: 12857802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds.
    Borisjuk L; Rolletschek H; Wobus U; Weber H
    J Exp Bot; 2003 Jan; 54(382):503-12. PubMed ID: 12508061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seed development and differentiation: a role for metabolic regulation.
    Borisjuk L; Rolletschek H; Radchuk R; Weschke W; Wobus U; Weber H
    Plant Biol (Stuttg); 2004 Jul; 6(4):375-86. PubMed ID: 15248120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive hormone profiling of the developing seeds of four grain legumes.
    Slater SM; Yuan HY; Lulsdorf MM; Vandenberg A; Zaharia LI; Han X; Abrams SR
    Plant Cell Rep; 2013 Dec; 32(12):1939-52. PubMed ID: 24062013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific regulation of gibberellin biosynthesis in developing pea seeds.
    Nadeau CD; Ozga JA; Kurepin LV; Jin A; Pharis RP; Reinecke DM
    Plant Physiol; 2011 Jun; 156(2):897-912. PubMed ID: 21482633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoenolpyruvate carboxykinase in developing pea seeds is associated with tissues involved in solute transport and is nitrogen-responsive.
    Delgado-Alvarado A; Walker RP; Leegood RC
    Plant Cell Environ; 2007 Feb; 30(2):225-35. PubMed ID: 17238913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of invertases in Fabaceae, focusing on transcriptional regulation of Pisum sativum invertases in seed subjected to drought.
    Morin A; Kadi F; Porcheron B; Vriet C; Maurousset L; Lemoine R; Pourtau N; Doidy J
    Physiol Plant; 2022 Mar; 174(2):e13673. PubMed ID: 35307852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification, characterization and physiological role of sucrose synthase in the pea seed coat (Pisum sativum L.).
    Déjardin A; Rochat C; Maugenest S; Boutin JP
    Planta; 1997; 201(2):128-37. PubMed ID: 9084215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low oxygen sensing and balancing in plant seeds: a role for nitric oxide.
    Borisjuk L; Macherel D; Benamar A; Wobus U; Rolletschek H
    New Phytol; 2007; 176(4):813-823. PubMed ID: 17937762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators.
    Zhou Y; Qu H; Dibley KE; Offler CE; Patrick JW
    Plant J; 2007 Feb; 49(4):750-64. PubMed ID: 17253986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system.
    Gibon Y; Vigeolas H; Tiessen A; Geigenberger P; Stitt M
    Plant J; 2002 Apr; 30(2):221-35. PubMed ID: 12000458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of soluble carbohydrates during the development of pea, faba bean and lupin seeds.
    Frias J; Vidal-Valverde C; Kozlowska H; Gorecki R; Honke J; Hedley CL
    Z Lebensm Unters Forsch; 1996 Jul; 203(1):27-32. PubMed ID: 8765987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense-inhibition of ADP-glucose pyrophosphorylase in Vicia narbonensis seeds increases soluble sugars and leads to higher water and nitrogen uptake.
    Rolletschek H; Hajirezaei MR; Wobus U; Weber H
    Planta; 2002 Apr; 214(6):954-64. PubMed ID: 11941473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins.
    Rolletschek H; Hosein F; Miranda M; Heim U; Götz KP; Schlereth A; Borisjuk L; Saalbach I; Wobus U; Weber H
    Plant Physiol; 2005 Apr; 137(4):1236-49. PubMed ID: 15793070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiamine binding and metabolism in germinating seeds of selected cereals and legumes.
    Gołda A; Szyniarowski P; Ostrowska K; Kozik A; Rapała-Kozik M
    Plant Physiol Biochem; 2004 Mar; 42(3):187-95. PubMed ID: 15051042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae.
    Rewers M; Sliwinska E
    Cytometry A; 2012 Dec; 81(12):1067-75. PubMed ID: 23136068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pea seed mutant affected in the differentiation of the embryonic epidermis is impaired in embryo growth and seed maturation.
    Borisjuk L; Wang TL; Rolletschek H; Wobus U; Weber H
    Development; 2002 Apr; 129(7):1595-607. PubMed ID: 11923197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolic role of the legume endosperm: a noninvasive imaging study.
    Melkus G; Rolletschek H; Radchuk R; Fuchs J; Rutten T; Wobus U; Altmann T; Jakob P; Borisjuk L
    Plant Physiol; 2009 Nov; 151(3):1139-54. PubMed ID: 19748915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients.
    Van Dongen JT; Ammerlaan AM; Wouterlood M; Van Aelst AC; Borstlap AC
    Ann Bot; 2003 May; 91(6):729-37. PubMed ID: 12714370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.