These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11971921)

  • 21. Molecular physiology of legume seed development.
    Weber H; Borisjuk L; Wobus U
    Annu Rev Plant Biol; 2005; 56():253-79. PubMed ID: 15862096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds.
    Vigeolas H; Chinoy C; Zuther E; Blessington B; Geigenberger P; Domoney C
    Plant Physiol; 2008 Jan; 146(1):74-82. PubMed ID: 18024559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.
    Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK
    BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrodiffusional uptake of organic cations by pea seed coats. Further evidence for poorly selective pores in the plasma membrane of seed coat parenchyma cells.
    van Dongen JT; Laan RG; Wouterlood M; Borstlap AC
    Plant Physiol; 2001 Aug; 126(4):1688-97. PubMed ID: 11500566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape.
    Vigeolas H; Möhlmann T; Martini N; Neuhaus HE; Geigenberger P
    Plant Physiol; 2004 Sep; 136(1):2676-86. PubMed ID: 15333758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea (
    Malovichko YV; Shtark OY; Vasileva EN; Nizhnikov AA; Antonets KS
    Cells; 2020 Mar; 9(3):. PubMed ID: 32210065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds.
    Rolletschek H; Radchuk R; Klukas C; Schreiber F; Wobus U; Borisjuk L
    New Phytol; 2005 Sep; 167(3):777-86. PubMed ID: 16101914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Allelopathic effects of extracts from fibrous roots of Coptis chinensis on two leguminous species].
    Li Q; Wu YK; Yuan L; Huang JG
    Zhongguo Zhong Yao Za Zhi; 2013 Mar; 38(6):806-11. PubMed ID: 23717956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Domestication has altered the ABA and gibberellin profiles in developing pea seeds.
    Balarynová J; Klčová B; Tarkowská D; Turečková V; Trněný O; Špundová M; Ochatt S; Smýkal P
    Planta; 2023 Jun; 258(2):25. PubMed ID: 37351659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid storage metabolism is limited by the prevailing low oxygen concentrations within developing seeds of oilseed rape.
    Vigeolas H; van Dongen JT; Waldeck P; Huhn D; Geigenberger P
    Plant Physiol; 2003 Dec; 133(4):2048-60. PubMed ID: 14645733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization of adenine nucleotide ratios at various values by an oxygen limitation of respiration in germinating lettuce (Lactuca sativa) seeds.
    Raymond P; Pradet A
    Biochem J; 1980 Jul; 190(1):39-44. PubMed ID: 7447934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.
    Niemann S; Burghardt M; Popp C; Riederer M
    Plant Cell Environ; 2013 May; 36(5):1027-36. PubMed ID: 23146121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can sucrose content in the phloem sap reaching field pea seeds (Pisum sativum L.) be an accurate indicator of seed growth potential?
    Munier-Jolain N; Salon C
    J Exp Bot; 2003 Nov; 54(392):2457-65. PubMed ID: 14512380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.
    Kranner I; Roach T; Beckett RP; Whitaker C; Minibayeva FV
    J Plant Physiol; 2010 Jul; 167(10):805-11. PubMed ID: 20303611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interplay of PsABAUGT1 with other abscisic acid metabolic genes in the regulation of ABA homeostasis during the development of pea seeds and germination in the presence of H
    Zdunek-Zastocka E; Grabowska A
    Plant Sci; 2019 Aug; 285():79-90. PubMed ID: 31203896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reserve accumulation in legume seeds.
    Gallardo K; Thompson R; Burstin J
    C R Biol; 2008 Oct; 331(10):755-62. PubMed ID: 18926489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a tissue-specific and developmentally regulated beta-1,3-glucanase gene in pea (Pisum sativum).
    Buchner P; Rochat C; Wuillème S; Boutin JP
    Plant Mol Biol; 2002 May; 49(2):171-86. PubMed ID: 11999373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools.
    Lu MZ; Snyder R; Grant J; Tegeder M
    Plant J; 2020 Jan; 101(1):217-236. PubMed ID: 31520495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of Seed Respiration and Growth in Vicia faba by Oxygen and Temperature: No Evidence for an Oxygen Diffusion Barrier.
    de Visser R; Dekhuijzen HM; Verkerke DR
    Plant Physiol; 1990 Jun; 93(2):668-72. PubMed ID: 16667521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial analysis of plant metabolism: sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns.
    Borisjuk L; Walenta S; Rolletschek H; Mueller-Klieser W; Wobus U; Weber H
    Plant J; 2002 Feb; 29(4):521-30. PubMed ID: 11846884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.