These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 11972050)

  • 1. cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions.
    Griffith TM; Chaytor AT; Taylor HJ; Giddings BD; Edwards DH
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6392-7. PubMed ID: 11972050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap junction-dependent and -independent EDHF-type relaxations may involve smooth muscle cAMP accumulation.
    Chaytor AT; Taylor HJ; Griffith TM
    Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1548-55. PubMed ID: 11893592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct hyperpolarizing and relaxant roles for gap junctions and endothelium-derived H2O2 in NO-independent relaxations of rabbit arteries.
    Chaytor AT; Edwards DH; Bakker LM; Griffith TM
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15212-7. PubMed ID: 14645719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connexin-mimetic peptides dissociate electrotonic EDHF-type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery.
    Chaytor AT; Bakker LM; Edwards DH; Griffith TM
    Br J Pharmacol; 2005 Jan; 144(1):108-14. PubMed ID: 15644874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The obligatory link: role of gap junctional communication in endothelium-dependent smooth muscle hyperpolarization.
    Griffith TM; Chaytor AT; Edwards DH
    Pharmacol Res; 2004 Jun; 49(6):551-64. PubMed ID: 15026033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced inhibition of the EDHF phenomenon by a phenyl methoxyalaninyl phosphoramidate derivative of dideoxyadenosine.
    Griffith TM; Chaytor AT; Edwards DH; Daverio F; McGuigan C
    Br J Pharmacol; 2004 May; 142(1):27-30. PubMed ID: 15131001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap junction-dependent increases in smooth muscle cAMP underpin the EDHF phenomenon in rabbit arteries.
    Taylor HJ; Chaytor AT; Edwards DH; Griffith TM
    Biochem Biophys Res Commun; 2001 May; 283(3):583-9. PubMed ID: 11341764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic AMP mediates EDHF-type relaxations of rabbit jugular vein.
    Griffith TM; Taylor HJ
    Biochem Biophys Res Commun; 1999 Sep; 263(1):52-7. PubMed ID: 10486252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery.
    Sandow SL; Goto K; Rummery NM; Hill CE
    J Physiol; 2004 May; 556(Pt 3):875-86. PubMed ID: 14766938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor.
    Sandow SL; Tare M; Coleman HA; Hill CE; Parkington HC
    Circ Res; 2002 May; 90(10):1108-13. PubMed ID: 12039801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication. Role of Gap junctions and phospholipase A2.
    Hutcheson IR; Chaytor AT; Evans WH; Griffith TM
    Circ Res; 1999 Jan 8-22; 84(1):53-63. PubMed ID: 9915774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of gap junctions in the responses to EDHF in rat and guinea-pig small arteries.
    Edwards G; Félétou M; Gardener MJ; Thollon C; Vanhoutte PM; Weston AH
    Br J Pharmacol; 1999 Dec; 128(8):1788-94. PubMed ID: 10588935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-Methyltetrahydrofolate and tetrahydrobiopterin can modulate electrotonically mediated endothelium-dependent vascular relaxation.
    Griffith TM; Chaytor AT; Bakker LM; Edwards DH
    Proc Natl Acad Sci U S A; 2005 May; 102(19):7008-13. PubMed ID: 15867155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of heterocellular Gap junctional communication in endothelium-dependent smooth muscle hyperpolarization: inhibition by a connexin-mimetic peptide.
    Dora KA; Martin PE; Chaytor AT; Evans WH; Garland CJ; Griffith TM
    Biochem Biophys Res Commun; 1999 Jan; 254(1):27-31. PubMed ID: 9920727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of gap-junction-dependent arterial relaxation by ascorbic acid.
    Edwards DH; Chaytor AT; Bakker LM; Griffith TM
    J Vasc Res; 2007; 44(5):410-22. PubMed ID: 17587861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct endothelium-derived hyperpolarizing factors emerge in vitro and in vivo and are mediated in part via connexin 40-dependent myoendothelial coupling.
    Boettcher M; de Wit C
    Hypertension; 2011 Apr; 57(4):802-8. PubMed ID: 21357279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascorbic acid and tetrahydrobiopterin potentiate the EDHF phenomenon by generating hydrogen peroxide.
    Garry A; Edwards DH; Fallis IF; Jenkins RL; Griffith TM
    Cardiovasc Res; 2009 Nov; 84(2):218-26. PubMed ID: 19592567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide potentiates the EDHF phenomenon by promoting endothelial Ca2+ mobilization.
    Edwards DH; Li Y; Griffith TM
    Arterioscler Thromb Vasc Biol; 2008 Oct; 28(10):1774-81. PubMed ID: 18669883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of gap junctions and EETs in endothelium-dependent hyperpolarization of porcine coronary artery.
    Edwards G; Thollon C; Gardener MJ; Félétou M; Vilaine J; Vanhoutte PM; Weston AH
    Br J Pharmacol; 2000 Mar; 129(6):1145-54. PubMed ID: 10725263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses.
    de Wit C; Griffith TM
    Pflugers Arch; 2010 May; 459(6):897-914. PubMed ID: 20379740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.