These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 11972063)

  • 1. Interactions between thalamic and cortical rhythms during semantic memory recall in human.
    Slotnick SD; Moo LR; Kraut MA; Lesser RP; Hart J
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6440-3. PubMed ID: 11972063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation of High-Frequency (50-200 Hz) Thalamocortical Electroencephalographic Rhythms by Isoflurane in Rats Is More Pronounced for the Thalamus Than for the Cortex.
    Plourde G; Reed SJ; Chapman CA
    Anesth Analg; 2016 Jun; 122(6):1818-25. PubMed ID: 26836135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram.
    Steriade M; Nuñez A; Amzica F
    J Neurosci; 1993 Aug; 13(8):3266-83. PubMed ID: 8340807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attenuation of high-frequency (50-200 Hz) thalamocortical EEG rhythms by propofol in rats is more pronounced for the thalamus than for the cortex.
    Reed SJ; Plourde G
    PLoS One; 2015; 10(4):e0123287. PubMed ID: 25875024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory signals from the thalamus: early thalamocortical phase synchronization entrains gamma oscillations during long-term memory retrieval.
    Staudigl T; Zaehle T; Voges J; Hanslmayr S; Esslinger C; Hinrichs H; Schmitt FC; Heinze HJ; Richardson-Klavehn A
    Neuropsychologia; 2012 Dec; 50(14):3519-27. PubMed ID: 22975190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human thalamus regulates cortical activity via spatially specific and structurally constrained phase-amplitude coupling.
    Malekmohammadi M; Elias WJ; Pouratian N
    Cereb Cortex; 2015 Jun; 25(6):1618-28. PubMed ID: 24408958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
    Steriade M
    Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between thalamic GABA content and resting cortical rhythm in neuropathic pain.
    Di Pietro F; Macey PM; Rae CD; Alshelh Z; Macefield VG; Vickers ER; Henderson LA
    Hum Brain Mapp; 2018 May; 39(5):1945-1956. PubMed ID: 29341331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional reorganization in thalamocortical networks: transition between spindling and delta sleep rhythms.
    Terman D; Bose A; Kopell N
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15417-22. PubMed ID: 8986826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex.
    Bernhard H; Schaper FLWVJ; Janssen MLF; Gommer ED; Jansma BM; Van Kranen-Mastenbroek V; Rouhl RPW; de Weerd P; Reithler J; Roberts MJ;
    Neuroimage; 2022 Nov; 263():119625. PubMed ID: 36103955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-alpha rhythms and memory processes.
    Klimesch W
    Int J Psychophysiol; 1997 Jun; 26(1-3):319-40. PubMed ID: 9203012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thalamocortical contributions to cognitive task activity.
    Hwang K; Shine JM; Cole MW; Sorenson E
    Elife; 2022 Dec; 11():. PubMed ID: 36537658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization of low-frequency rhythms in corticothalamic networks.
    Contreras D; Steriade M
    Neuroscience; 1997 Jan; 76(1):11-24. PubMed ID: 8971755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple thalamo-cortical disconnections in anterior thalamic infarction: implications for thalamic mechanisms of memory and language.
    Nishio Y; Hashimoto M; Ishii K; Ito D; Mugikura S; Takahashi S; Mori E
    Neuropsychologia; 2014 Jan; 53():264-73. PubMed ID: 24321272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuation of high-frequency (30-200 Hz) thalamocortical EEG rhythms as correlate of anaesthetic action: evidence from dexmedetomidine.
    Plourde G; Arseneau F
    Br J Anaesth; 2017 Dec; 119(6):1150-1160. PubMed ID: 29045562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracranial volume conduction of cortical spikes and sleep potentials recorded with deep brain stimulating electrodes.
    Wennberg RA; Lozano AM
    Clin Neurophysiol; 2003 Aug; 114(8):1403-18. PubMed ID: 12888022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.