These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11972617)

  • 1. Beta-glucose 1-phosphate-interconverting enzymes in maltose- and trehalose-fermenting lactic acid bacteria.
    Andersson U; Rådström P
    Environ Microbiol; 2002 Feb; 4(2):81-8. PubMed ID: 11972617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis.
    Andersson U; Levander F; Rådström P
    J Biol Chem; 2001 Nov; 276(46):42707-13. PubMed ID: 11553642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient one-pot enzymatic synthesis of trehalose 6-phosphate using GH65 α-glucoside phosphorylases.
    Taguchi Y; Saburi W; Imai R; Mori H
    Carbohydr Res; 2020 Feb; 488():107902. PubMed ID: 31911362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological function of the maltose operon regulator, MalR, in Lactococcus lactis.
    Andersson U; Rådström P
    BMC Microbiol; 2002 Sep; 2():28. PubMed ID: 12296976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological role of beta-phosphoglucomutase in Lactococcus lactis.
    Levander F; Andersson U; Rådström P
    Appl Environ Microbiol; 2001 Oct; 67(10):4546-53. PubMed ID: 11571154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of two phosphoglucomutases from Lactococcus lactis subsp. lactis and their regulation in maltose- and glucose-utilizing cells.
    Qian N; Stanley GA; Hahn-Hägerdal B; Rådström P
    J Bacteriol; 1994 Sep; 176(17):5304-11. PubMed ID: 8071206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.
    Taguchi Y; Saburi W; Imai R; Mori H
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1512-1519. PubMed ID: 28537141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Product formation and phosphoglucomutase activities in Lactococcus lactis: cloning and characterization of a novel phosphoglucomutase gene.
    Qian N; Stanley GA; Bunte A; Rdstrm P
    Microbiology (Reading); 1997 Mar; 143 ( Pt 3)():855-865. PubMed ID: 9084169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes.
    Xavier KB; Peist R; Kossmann M; Boos W; Santos H
    J Bacteriol; 1999 Jun; 181(11):3358-67. PubMed ID: 10348846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic localization and regulation of the maltose phosphorylase gene, malP, in Lactococcus lactis.
    Nilsson U; Rådström P
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1565-1573. PubMed ID: 11390687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of trehalose in Euglena gracilis. Beta glucose 1,6-bisphosphate, activation factor of phosphoglucomutase for beta glucose 1-phosphate.
    Maréchal LR; Belocopitow E
    Eur J Biochem; 1974 Feb; 42(1):45-50. PubMed ID: 4208465
    [No Abstract]   [Full Text] [Related]  

  • 12. Maltose utilization in Enterococcus faecalis.
    Le Breton Y; Pichereau V; Sauvageot N; Auffray Y; Rincé A
    J Appl Microbiol; 2005; 98(4):806-13. PubMed ID: 15752325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and structural characterization reveals Rv3400 codes for β-phosphoglucomutase in Mycobacterium tuberculosis.
    Singh L; Karthikeyan S; Thakur KG
    Protein Sci; 2024 Apr; 33(4):e4943. PubMed ID: 38501428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of trehalose phosphorylase by Catellatospora ferruginea.
    Aisaka K; Masuda T
    FEMS Microbiol Lett; 1995 Aug; 131(1):47-51. PubMed ID: 7557309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoglucomutase mutants of Escherichia coli K-12.
    Adhya S; Schwartz M
    J Bacteriol; 1971 Nov; 108(2):621-6. PubMed ID: 4942754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The uptake and metabolism of glucose, maltose and starch by the rumen ciliate Epidinium ecaudatum caudatum.
    Coleman GS; Laurie JI
    J Gen Microbiol; 1976 Aug; 96(2):364-74. PubMed ID: 182907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of trehalose in Saccharomyces cerevisiae growing on maltose is dependent on the TPS1 gene encoding the UDPglucose-linked trehalose synthase.
    Petit T; François J
    FEBS Lett; 1994 Dec; 355(3):309-13. PubMed ID: 7988695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase.
    Nakai H; Petersen BO; Westphal Y; Dilokpimol A; Abou Hachem M; Duus JØ; Schols HA; Svensson B
    Protein Eng Des Sel; 2010 Oct; 23(10):781-7. PubMed ID: 20713411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus.
    Wannet WJ; Op den Camp HJ; Wisselink HW; van der Drift C; Van Griensven LJ; Vogels GD
    Biochim Biophys Acta; 1998 Sep; 1425(1):177-88. PubMed ID: 9813313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trehalose metabolism in Saccharomyces cerevisiae during heat-shock.
    Ribeiro MJ; Silva JT; Panek AD
    Biochim Biophys Acta; 1994 Jul; 1200(2):139-47. PubMed ID: 8031833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.