These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 11972619)
41. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes. Robinson G; Caldwell GS; Wade MJ; Free A; Jones CLW; Stead SM Sci Rep; 2016 Dec; 6():38850. PubMed ID: 27941918 [TBL] [Abstract][Full Text] [Related]
42. Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina. Koschorreck M; Wendt-Potthoff K; Geller W Environ Sci Technol; 2003 Mar; 37(6):1159-62. PubMed ID: 12680669 [TBL] [Abstract][Full Text] [Related]
43. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Canfield DE; Thamdrup B; Hansen JW Geochim Cosmochim Acta; 1993 Aug; 57(16):3867-83. PubMed ID: 11537734 [TBL] [Abstract][Full Text] [Related]
44. High spatial resolution of distribution and interconnections between Fe- and N-redox processes in profundal lake sediments. Melton ED; Stief P; Behrens S; Kappler A; Schmidt C Environ Microbiol; 2014 Oct; 16(10):3287-303. PubMed ID: 25041287 [TBL] [Abstract][Full Text] [Related]
45. Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Barringer JL; Mumford A; Young LY; Reilly PA; Bonin JL; Rosman R Water Res; 2010 Nov; 44(19):5532-44. PubMed ID: 20580401 [TBL] [Abstract][Full Text] [Related]
46. [Microbial sulfate reduction in sediments of the coastal zone and littoral of the Kandalaksha bay of the White sea]. Savvichev AS; Rusanov II; Iusupov SK; Baĭramov IT; Pimenov NV; Lein AIu; Ivanov MV Mikrobiologiia; 2003; 72(4):535-46. PubMed ID: 14526546 [TBL] [Abstract][Full Text] [Related]
47. Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques. Liu H; Tan S; Sheng Z; Liu Y; Yu T Biotechnol Bioeng; 2014 Nov; 111(11):2155-62. PubMed ID: 24890472 [TBL] [Abstract][Full Text] [Related]
48. Influence of oxic/anoxic condition on sorption behavior of PFOS in sediment. Ololade IA; Zhou Q; Pan G Chemosphere; 2016 May; 150():798-803. PubMed ID: 26350897 [TBL] [Abstract][Full Text] [Related]
49. Effect of TiO Miao L; Wang P; Wang C; Hou J; Yao Y; Liu J; Lv B; Yang Y; You G; Xu Y; Liu Z; Liu S Water Res; 2018 Feb; 129():287-296. PubMed ID: 29156393 [TBL] [Abstract][Full Text] [Related]
50. The dynamics of cable bacteria colonization in surface sediments: a 2D view. Yin H; Aller RC; Zhu Q; Aller JY Sci Rep; 2021 Mar; 11(1):7167. PubMed ID: 33785772 [TBL] [Abstract][Full Text] [Related]
51. Abundance and diversity of iron reducing bacteria communities in the sediments of a heavily polluted freshwater lake. Fan YY; Li BB; Yang ZC; Cheng YY; Liu DF; Yu HQ Appl Microbiol Biotechnol; 2018 Dec; 102(24):10791-10801. PubMed ID: 30334090 [TBL] [Abstract][Full Text] [Related]
52. Solving the problem at the source: Controlling Mn release at the sediment-water interface via hypolimnetic oxygenation. Bryant LD; Hsu-Kim H; Gantzer PA; Little JC Water Res; 2011 Dec; 45(19):6381-92. PubMed ID: 22000717 [TBL] [Abstract][Full Text] [Related]
53. Stratification of Sulfur Species and Microbial Community in Launched Marine Sediment by an Improved Sulfur-Fractionation Method and 16S rRNA Gene Sequencing. Ihara H; Hori T; Aoyagi T; Hosono H; Takasaki M; Katayama Y Microbes Environ; 2019 Jun; 34(2):199-205. PubMed ID: 31189771 [TBL] [Abstract][Full Text] [Related]
54. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H; Odagiri M; Ito T; Okabe S Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714 [TBL] [Abstract][Full Text] [Related]
55. Bacteria in gel probes: comparison of the activity of immobilized sulfate-reducing bacteria with in situ sulfate reduction in a wetland sediment. Edenborn HM; Brickett LA J Microbiol Methods; 2001 Jul; 46(1):51-62. PubMed ID: 11412913 [TBL] [Abstract][Full Text] [Related]
56. Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm. Malkin SY; Meysman FJ Appl Environ Microbiol; 2015 Feb; 81(3):948-56. PubMed ID: 25416774 [TBL] [Abstract][Full Text] [Related]
57. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
58. Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments. Palermo C; Dittrich M Environ Microbiol Rep; 2016 Apr; 8(2):179-86. PubMed ID: 26636960 [TBL] [Abstract][Full Text] [Related]
59. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment. Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643 [TBL] [Abstract][Full Text] [Related]
60. Extremophile microbiomes in acidic and hypersaline river sediments of Western Australia. Lu S; Peiffer S; Lazar CS; Oldham C; Neu TR; Ciobota V; Näb O; Lillicrap A; Rösch P; Popp J; Küsel K Environ Microbiol Rep; 2016 Feb; 8(1):58-67. PubMed ID: 26524974 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]