BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 11972688)

  • 1. Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates.
    Charalampopoulos D; Pandiella SS; Webb C
    J Appl Microbiol; 2002; 92(5):851-9. PubMed ID: 11972688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions.
    Charalampopoulos D; Pandiella SS; Webb C
    Int J Food Microbiol; 2003 Apr; 82(2):133-41. PubMed ID: 12568753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of potentially probiotic beverages using single and mixed cereal substrates fermented with lactic acid bacteria cultures.
    Rathore S; Salmerón I; Pandiella SS
    Food Microbiol; 2012 May; 30(1):239-44. PubMed ID: 22265307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and metabolism of selected strains of probiotic bacteria, in maize porridge with added malted barley.
    Helland MH; Wicklund T; Narvhus JA
    Int J Food Microbiol; 2004 Mar; 91(3):305-13. PubMed ID: 14984778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabinose fermentation by Lactobacillus plantarum in sourdough with added pentosans and alphaalpha-L-arabinofuranosidase: a tool to increase the production of acetic acid.
    Gobbetti M; Lavermicocca P; Minervini F; de Angelis M; Corsetti A
    J Appl Microbiol; 2000 Feb; 88(2):317-24. PubMed ID: 10736001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions.
    Jiang Q; Stamatova I; Kari K; Meurman JH
    Benef Microbes; 2015; 6(3):361-8. PubMed ID: 25380800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and metabolism of selected strains of probiotic bacteria in milk.
    Østlie HM; Helland MH; Narvhus JA
    Int J Food Microbiol; 2003 Oct; 87(1-2):17-27. PubMed ID: 12927703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutritional requirements and simplified cultivation medium to study growth and energetics of a sourdough lactic acid bacterium Lactobacillus fermentum Ogi E1 during heterolactic fermentation of starch.
    Calderon M; Loiseau G; Guyot JP
    J Appl Microbiol; 2001 Apr; 90(4):508-16. PubMed ID: 11309060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation adaptability of three probiotic Lactobacillus strains to oat, germinated oat and malted oat substrates.
    Herrera-Ponce A; Nevárez-Morillón G; Ortega-Rívas E; Pérez-Vega S; Salmerón I
    Lett Appl Microbiol; 2014 Oct; 59(4):449-56. PubMed ID: 24979232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-culture fermentation of peanut-soy milk for the development of a novel functional beverage.
    Santos CC; Libeck Bda S; Schwan RF
    Int J Food Microbiol; 2014 Sep; 186():32-41. PubMed ID: 24984220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens.
    Hütt P; Shchepetova J; Lõivukene K; Kullisaar T; Mikelsaar M
    J Appl Microbiol; 2006 Jun; 100(6):1324-32. PubMed ID: 16696680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of mannitol producing Leuconostoc citreum TR116 to reduce sugar content of barley, oat and wheat malt-based worts.
    Rice T; Sahin AW; Heitmann M; Lynch KM; Jacob F; Arendt EK; Coffey A
    Food Microbiol; 2020 Sep; 90():103464. PubMed ID: 32336355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo.
    Harlow BE; Lawrence LM; Harris PA; Aiken GE; Flythe MD
    PLoS One; 2017; 12(3):e0174059. PubMed ID: 28358885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances.
    Corcoran BM; Ross RP; Fitzgerald GF; Stanton C
    J Appl Microbiol; 2004; 96(5):1024-39. PubMed ID: 15078519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probiotic potential of lactobacillus strains isolated from sorghum-based traditional fermented food.
    Rao KP; Chennappa G; Suraj U; Nagaraja H; Raj AP; Sreenivasa MY
    Probiotics Antimicrob Proteins; 2015 Jun; 7(2):146-56. PubMed ID: 25666113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamine deamidation by cereal-associated lactic acid bacteria.
    Vermeulen N; Gänzle MG; Vogel RF
    J Appl Microbiol; 2007 Oct; 103(4):1197-205. PubMed ID: 17897224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation conditions influence the fatty acid composition of the membranes of Lactobacillus reuteri I5007 and its survival following freeze-drying.
    Liu XT; Hou CL; Zhang J; Zeng XF; Qiao SY
    Lett Appl Microbiol; 2014 Oct; 59(4):398-403. PubMed ID: 24888635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid.
    Liguori R; Soccol CR; Vandenberghe LP; Woiciechowski AL; Ionata E; Marcolongo L; Faraco V
    Biomed Res Int; 2015; 2015():240231. PubMed ID: 26640784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malt sprout extract medium for cultivation of Lactobacillus plantarum protective cultures.
    Laitila A; Saarela M; Kirk L; Siika-Aho M; Haikara A; Mattila-Sandholm T; Virkajärvi I
    Lett Appl Microbiol; 2004; 39(4):336-40. PubMed ID: 15355535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations.
    Rodríguez C; Rimaux T; Fornaguera MJ; Vrancken G; de Valdez GF; De Vuyst L; Mozzi F
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2519-27. PubMed ID: 21993480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.