These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 11972783)
1. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Fischer B; Rummel G; Aldridge P; Jenal U Mol Microbiol; 2002 Apr; 44(2):461-78. PubMed ID: 11972783 [TBL] [Abstract][Full Text] [Related]
2. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus. Reisenauer A; Mohr CD; Shapiro L J Bacteriol; 1996 Apr; 178(7):1919-27. PubMed ID: 8606166 [TBL] [Abstract][Full Text] [Related]
3. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease. Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518 [TBL] [Abstract][Full Text] [Related]
4. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Deuerling E; Mogk A; Richter C; Purucker M; Schumann W Mol Microbiol; 1997 Mar; 23(5):921-33. PubMed ID: 9076729 [TBL] [Abstract][Full Text] [Related]
5. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. Wu J; Newton A J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189 [TBL] [Abstract][Full Text] [Related]
6. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T; Ogura T; Tatsuta T; Bukau B Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822 [TBL] [Abstract][Full Text] [Related]
7. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823 [TBL] [Abstract][Full Text] [Related]
8. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32. Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869 [TBL] [Abstract][Full Text] [Related]
9. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus. da Silva AC; Simão RC; Susin MF; Baldini RL; Avedissian M; Gomes SL Mol Microbiol; 2003 Jul; 49(2):541-53. PubMed ID: 12828648 [TBL] [Abstract][Full Text] [Related]
10. An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus. Schramm FD; Heinrich K; Thüring M; Bernhardt J; Jonas K PLoS Genet; 2017 Dec; 13(12):e1007148. PubMed ID: 29281627 [TBL] [Abstract][Full Text] [Related]
11. The Caulobacter heat shock sigma factor gene rpoH is positively autoregulated from a sigma32-dependent promoter. Wu J; Newton A J Bacteriol; 1997 Jan; 179(2):514-21. PubMed ID: 8990305 [TBL] [Abstract][Full Text] [Related]
12. Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. Roberts RC; Toochinda C; Avedissian M; Baldini RL; Gomes SL; Shapiro L J Bacteriol; 1996 Apr; 178(7):1829-41. PubMed ID: 8606155 [TBL] [Abstract][Full Text] [Related]
13. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. Tomoyasu T; Gamer J; Bukau B; Kanemori M; Mori H; Rutman AJ; Oppenheim AB; Yura T; Yamanaka K; Niki H EMBO J; 1995 Jun; 14(11):2551-60. PubMed ID: 7781608 [TBL] [Abstract][Full Text] [Related]
14. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. Kanemori M; Nishihara K; Yanagi H; Yura T J Bacteriol; 1997 Dec; 179(23):7219-25. PubMed ID: 9393683 [TBL] [Abstract][Full Text] [Related]
15. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine. Blaszczak A; Georgopoulos C; Liberek K Mol Microbiol; 1999 Jan; 31(1):157-66. PubMed ID: 9987118 [TBL] [Abstract][Full Text] [Related]
16. The heat shock response of Escherichia coli. Arsène F; Tomoyasu T; Bukau B Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710 [TBL] [Abstract][Full Text] [Related]
17. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease. Obrist M; Milek S; Klauck E; Hengge R; Narberhaus F Microbiology (Reading); 2007 Aug; 153(Pt 8):2560-2571. PubMed ID: 17660420 [TBL] [Abstract][Full Text] [Related]
18. Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus. Simão RC; Susin MF; Alvarez-Martinez CE; Gomes SL Mol Microbiol; 2005 Jul; 57(2):592-603. PubMed ID: 15978087 [TBL] [Abstract][Full Text] [Related]
19. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease. Bruckner RC; Gunyuzlu PL; Stein RL Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509 [TBL] [Abstract][Full Text] [Related]
20. The C terminus of sigma(32) is not essential for degradation by FtsH. Tomoyasu T; Arsène F; Ogura T; Bukau B J Bacteriol; 2001 Oct; 183(20):5911-7. PubMed ID: 11566990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]