BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11975853)

  • 1. High translation efficiency is mediated by the encephalomyocarditis virus internal ribosomal entry sites if the natural sequence surrounding the eleventh AUG is retained.
    Qiao J; Roy V; Girard MH; Caruso M
    Hum Gene Ther; 2002 May; 13(7):881-7. PubMed ID: 11975853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sequence context of the initiation codon in the encephalomyocarditis virus leader modulates efficiency of internal translation initiation.
    Davies MV; Kaufman RJ
    J Virol; 1992 Apr; 66(4):1924-32. PubMed ID: 1312611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of proteasome alpha-subunit PSMA7 in hepatitis C virus internal ribosome entry site-mediated translation.
    Krüger M; Beger C; Welch PJ; Barber JR; Manns MP; Wong-Staal F
    Mol Cell Biol; 2001 Dec; 21(24):8357-64. PubMed ID: 11713272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of chimeric picornavirus IRESes show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon.
    Ohlmann T; Jackson RJ
    RNA; 1999 Jun; 5(6):764-78. PubMed ID: 10376876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location.
    Bochkov YA; Palmenberg AC
    Biotechniques; 2006 Sep; 41(3):283-4, 286, 288 passim. PubMed ID: 16989088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of internal ribosomal entry sites as molecular tools for bicistronic expression.
    Sadikoglou E; Daoutsali E; Petridou E; Grigoriou M; Skavdis G
    J Biotechnol; 2014 Jul; 181():31-4. PubMed ID: 24709397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice.
    Créancier L; Mercier P; Prats AC; Morello D
    Mol Cell Biol; 2001 Mar; 21(5):1833-40. PubMed ID: 11238920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal ribosomal entry site-containing retroviral vectors with green fluorescent protein and drug resistance markers.
    Levenson VV; Transue ED; Roninson IB
    Hum Gene Ther; 1998 May; 9(8):1233-6. PubMed ID: 9625263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive Replication of a Retroviral Replicating Vector Can Expand the A Bulge in the Encephalomyocarditis Virus Internal Ribosome Entry Site and Change Translation Efficiency of the Downstream Transgene.
    Lin AH; Liu Y; Burrascano C; Cunanan K; Logg CR; Robbins JM; Kasahara N; Gruber H; Ibañez C; Jolly DJ
    Hum Gene Ther Methods; 2016 Apr; 27(2):59-70. PubMed ID: 26918465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus.
    Kim DG; Kang HM; Jang SK; Shin HS
    Mol Cell Biol; 1992 Aug; 12(8):3636-43. PubMed ID: 1321342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retroviral vectors containing putative internal ribosome entry sites: development of a polycistronic gene transfer system and applications to human gene therapy.
    Morgan RA; Couture L; Elroy-Stein O; Ragheb J; Moss B; Anderson WF
    Nucleic Acids Res; 1992 Mar; 20(6):1293-9. PubMed ID: 1313966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos.
    Ghattas IR; Sanes JR; Majors JE
    Mol Cell Biol; 1991 Dec; 11(12):5848-59. PubMed ID: 1658618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The optimal use of IRES (internal ribosome entry site) in expression vectors.
    Attal J; Théron MC; Houdebine LM
    Genet Anal; 1999 Nov; 15(3-5):161-5. PubMed ID: 10596757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of bicistronic retroviral vectors containing internal ribosome entry sites (IRES) using expression of human interleukin-12 (IL-12) as a readout.
    Harries M; Phillipps N; Anderson R; Prentice G; Collins M
    J Gene Med; 2000; 2(4):243-9. PubMed ID: 10953915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronic vector expression.
    Licursi M; Christian SL; Pongnopparat T; Hirasawa K
    Gene Ther; 2011 Jun; 18(6):631-6. PubMed ID: 21368899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein.
    Jang SK; Wimmer E
    Genes Dev; 1990 Sep; 4(9):1560-72. PubMed ID: 2174810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI.
    Chinnasamy D; Milsom MD; Shaffer J; Neuenfeldt J; Shaaban AF; Margison GP; Fairbairn LJ; Chinnasamy N
    Virol J; 2006 Mar; 3():14. PubMed ID: 16539700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector.
    Mizuguchi H; Xu Z; Ishii-Watabe A; Uchida E; Hayakawa T
    Mol Ther; 2000 Apr; 1(4):376-82. PubMed ID: 10933956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Translational efficiency of BVDV IRES and EMCV IRES for T7 RNA polymerase driven cytoplasmic expression in mammalian cell lines].
    Ghassemi F; Madadgar O; Roohvand F; Rasekhian M; Etemadzadeh MH; Boroujeni GRN; Langroudi AG; Azadmanesh K
    Mol Biol (Mosk); 2017; 51(2):324-333. PubMed ID: 28537239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene transfer using a disabled herpes virus vector containing the EMCV IRES allows multiple gene expression in vitro and in vivo.
    Wagstaff MJ; Lilley CE; Smith J; Robinson MJ; Coffin RS; Latchman DS
    Gene Ther; 1998 Nov; 5(11):1566-70. PubMed ID: 9930311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.