BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11976121)

  • 1. Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library.
    López-García B; Pérez-Payá E; Marcos JF
    Appl Environ Microbiol; 2002 May; 68(5):2453-60. PubMed ID: 11976121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the mode of action of the antifungal hexapeptide PAF26.
    Muñoz A; López-García B; Marcos JF
    Antimicrob Agents Chemother; 2006 Nov; 50(11):3847-55. PubMed ID: 17065623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits.
    López-García B; González-Candelas L; Pérez-Payá E; Marcos JF
    Mol Plant Microbe Interact; 2000 Aug; 13(8):837-46. PubMed ID: 10939255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells.
    Muñoz A; Harries E; Contreras-Valenzuela A; Carmona L; Read ND; Marcos JF
    PLoS One; 2013; 8(1):e54813. PubMed ID: 23349973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens.
    López-García B; Veyrat A; Pérez-Payá E; González-Candelas L; Marcos JF
    Int J Food Microbiol; 2003 Dec; 89(2-3):163-70. PubMed ID: 14623382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic peptide combinatorial libraries: a method for the identification of bioactive peptides against phytopathogenic fungi.
    Reed JD; Edwards DL; Gonzalez CF
    Mol Plant Microbe Interact; 1997 Jul; 10(5):537-49. PubMed ID: 9204560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26.
    Muñoz A; López-García B; Pérez-Payá E; Marcos JF
    Biochem Biophys Res Commun; 2007 Mar; 354(1):172-7. PubMed ID: 17222805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concatemerization increases the inhibitory activity of short, cell-penetrating, cationic and tryptophan-rich antifungal peptides.
    López-García B; Harries E; Carmona L; Campos-Soriano L; López JJ; Manzanares P; Gandía M; Coca M; Marcos JF
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8011-21. PubMed ID: 25846331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sporicidal activity of synthetic antifungal undecapeptides and control of Penicillium rot of apples.
    Badosa E; Ferré R; Francés J; Bardají E; Feliu L; Planas M; Montesinos E
    Appl Environ Microbiol; 2009 Sep; 75(17):5563-9. PubMed ID: 19617390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of antimicrobial peptides to control citrus postharvest decay caused by Penicillium digitatum.
    Muñoz A; López-García B; Marcos JF
    J Agric Food Chem; 2007 Oct; 55(20):8170-6. PubMed ID: 17867640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Penicillium digitatum protein O-mannosyltransferase Pmt2 is required for cell wall integrity, conidiogenesis, virulence and sensitivity to the antifungal peptide PAF26.
    Harries E; Gandía M; Carmona L; Marcos JF
    Mol Plant Pathol; 2015 Sep; 16(7):748-61. PubMed ID: 25640475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal activity of (KW)n or (RW)n peptide against Fusarium solani and Fusarium oxysporum.
    Gopal R; Na H; Seo CH; Park Y
    Int J Mol Sci; 2012 Nov; 13(11):15042-53. PubMed ID: 23203110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes involved in protein glycosylation determine the activity and cell internalization of the antifungal peptide PAF26 in Saccharomyces cerevisiae.
    Harries E; Carmona L; Muñoz A; Ibeas JI; Read ND; Gandía M; Marcos JF
    Fungal Genet Biol; 2013; 58-59():105-15. PubMed ID: 23942187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of the antifungal potency of the amidated peptide H-Orn-Orn-Trp-Trp-NH2 against food contaminants.
    Thery T; O'Callaghan Y; O'Brien N; Arendt EK
    Int J Food Microbiol; 2018 Jan; 265():40-48. PubMed ID: 29127809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and evaluation of aromatic methoxime derivatives against five postharvest phytopathogenic fungi of fruits. Main structure-activity relationships.
    Cortés I; di Liberto MG; Kaufman TS; Derita MG; Bracca ABJ
    Food Chem; 2020 Aug; 321():126701. PubMed ID: 32283502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping and Identification of Antifungal Peptides in the Putative Antifungal Protein AfpB from the Filamentous Fungus
    Garrigues S; Gandía M; Borics A; Marx F; Manzanares P; Marcos JF
    Front Microbiol; 2017; 8():592. PubMed ID: 28428776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial action of synthetic peptides towards wine spoilage yeasts.
    Enrique M; Marcos JF; Yuste M; Martínez M; Vallés S; Manzanares P
    Int J Food Microbiol; 2007 Sep; 118(3):318-25. PubMed ID: 17822793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of a synthetic peptide combinatorial library to identify inhibitors of the appressorium formation in Magnaporthe oryzae.
    Rebollar A; Marcos JF; López-García B
    Biochem Biophys Res Commun; 2014 Nov; 454(1):1-6. PubMed ID: 25450357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species.
    Campaniello D; Corbo MR; Sinigaglia M
    J Food Prot; 2010 Jun; 73(6):1124-8. PubMed ID: 20537272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014.
    Wang H; Yan Y; Wang J; Zhang H; Qi W
    PLoS One; 2012; 7(1):e29452. PubMed ID: 22276116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.