BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11976121)

  • 61. Combinatorial approach to lead optimization of a novel hexapeptide with antifungal activity.
    Kundu B; Rastogi SK; Batra S; Raghuwanshi SK; Shukla PK
    Bioorg Med Chem Lett; 2000 Aug; 10(16):1779-81. PubMed ID: 10969966
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens.
    Güell I; Micaló L; Cano L; Badosa E; Ferre R; Montesinos E; Bardají E; Feliu L; Planas M
    Peptides; 2012 Jan; 33(1):9-17. PubMed ID: 22198367
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Antimicrobial properties of two novel peptides derived from Theobroma cacao osmotin.
    Falcao LL; Silva-Werneck JO; Ramos Ade R; Martins NF; Bresso E; Rodrigues MA; Bemquerer MP; Marcellino LH
    Peptides; 2016 May; 79():75-82. PubMed ID: 26996966
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stabilisation of mixed peptide/lipid complexes in selective antifungal hexapeptides.
    López-García B; Marcos JF; Abad C; Pérez-Payá E
    Biochim Biophys Acta; 2004 Jan; 1660(1-2):131-7. PubMed ID: 14757228
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In vitro screening of antifungal activity of marine sponge extracts against five phytopathogenic fungi.
    El Amraoui B; El Wahidi M; Fassouane A
    Springerplus; 2014; 3():629. PubMed ID: 25392799
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Antifungal Indole Alkaloids from Winchia calophylla.
    Yang ML; Chen J; Sun M; Zhang DB; Gao K
    Planta Med; 2016 May; 82(8):712-6. PubMed ID: 27002397
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains.
    Choińska R; Piasecka-Jóźwiak K; Chabłowska B; Dumka J; Łukaszewicz A
    Antonie Van Leeuwenhoek; 2020 Aug; 113(8):1135-1146. PubMed ID: 32372375
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.
    He L; Liu Y; Mustapha A; Lin M
    Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1.
    De Lucca AJ; Heden LO; Ingber B; Bhatnagar D
    J Agric Food Chem; 2011 Jul; 59(13):6933-9. PubMed ID: 21595494
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum.
    Tao N; Jia L; Zhou H
    Food Chem; 2014 Jun; 153():265-71. PubMed ID: 24491729
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Antimicrobial alumina nanobiostructures of disulfide- and triazole-linked peptides: Synthesis, characterization, membrane interactions and biological activity.
    Torres LMFC; Almeida MT; Santos TL; Marinho LES; de Mesquita JP; da Silva LM; Dos Santos WTP; Martins HR; Kato KC; Alves ESF; Liao LM; de Magalhães MTQ; de Mendonça FG; Pereira FV; Resende JM; Bemquerer MP; Rodrigues MA; Verly RM
    Colloids Surf B Biointerfaces; 2019 May; 177():94-104. PubMed ID: 30711763
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides.
    Muñoz A; Marcos JF
    J Appl Microbiol; 2006 Dec; 101(6):1199-207. PubMed ID: 17105549
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria.
    Badosa E; Ferre R; Planas M; Feliu L; Besalú E; Cabrefiga J; Bardají E; Montesinos E
    Peptides; 2007 Dec; 28(12):2276-85. PubMed ID: 17980935
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Two new eremophilenolides from the roots of
    Wu H; Liu T; Lian Y; Wang W
    Nat Prod Res; 2019 May; 33(10):1442-1448. PubMed ID: 29281920
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges.
    Kharchoufi S; Parafati L; Licciardello F; Muratore G; Hamdi M; Cirvilleri G; Restuccia C
    Food Microbiol; 2018 Sep; 74():107-112. PubMed ID: 29706324
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Efficiency of polyene antibiotics against phytopathogenic fungi in vitro.
    Egorenkova AN
    Fed Proc Transl Suppl; 1965; 24(5):919-20. PubMed ID: 5214605
    [No Abstract]   [Full Text] [Related]  

  • 77. Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens.
    Ma J; Li Y; Chen H; Zeng Z; Li ZL; Jiang H
    Molecules; 2016 Feb; 21(2):254. PubMed ID: 26907241
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Antifungal activity and tautomeric cyclization equilibria of formylphenylboronic acids.
    Borys KM; Wieczorek D; Pecura K; Lipok J; Adamczyk-Woźniak A
    Bioorg Chem; 2019 Oct; 91():103081. PubMed ID: 31445482
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 1-Phenyl-3-toluyl-4-[ortho-1'-(N-ethyl-2'-methylpropylamine)]phenylpyrazole, synthesis and evaluation of the in vitro antifungal activity against Botrytis cinerea and Fusarium oxysporum.
    Dardari Z; Boudouma M; Sebban A; Bahloul A; Kitane S; Berrada M
    Farmaco; 2004 Sep; 59(9):673-8. PubMed ID: 15337431
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of octanal on the mycelial growth of Penicillium italicum and P. digitatum.
    Tao N; Jia L; Zhou H; He X
    World J Microbiol Biotechnol; 2014 Apr; 30(4):1169-75. PubMed ID: 24162951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.