BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 11976273)

  • 1. Pharmacology of the nitric oxide receptor, soluble guanylyl cyclase, in cerebellar cells.
    Bellamy TC; Garthwaite J
    Br J Pharmacol; 2002 May; 136(1):95-103. PubMed ID: 11976273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity.
    Galle J; Zabel U; Hübner U; Hatzelmann A; Wagner B; Wanner C; Schmidt HH
    Br J Pharmacol; 1999 May; 127(1):195-203. PubMed ID: 10369473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the vasorelaxant effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) and diethylamine/nitric oxide (DEA/NO) on the human radial artery used as coronary bypass graft.
    Berkan O; Bagcivan I; Kaya T; Yildirim K; Yildirim S; Doğan K
    Can J Physiol Pharmacol; 2007 May; 85(5):521-6. PubMed ID: 17632587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YC-1 activation of human soluble guanylyl cyclase has both heme-dependent and heme-independent components.
    Martin E; Lee YC; Murad F
    Proc Natl Acad Sci U S A; 2001 Nov; 98(23):12938-42. PubMed ID: 11687640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase.
    Schrammel A; Behrends S; Schmidt K; Koesling D; Mayer B
    Mol Pharmacol; 1996 Jul; 50(1):1-5. PubMed ID: 8700100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon monoxide.
    Hoenicka M; Becker EM; Apeler H; Sirichoke T; Schröder H; Gerzer R; Stasch JP
    J Mol Med (Berl); 1999 Jan; 77(1):14-23. PubMed ID: 9930922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms underlying rat mesenteric artery vasorelaxation induced by the nitric oxide-independent soluble guanylyl cyclase stimulators BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-4-ylamine] and YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl Indazole].
    Teixeira CE; Priviero FB; Webb RC
    J Pharmacol Exp Ther; 2006 Apr; 317(1):258-66. PubMed ID: 16352702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation.
    Feelisch M; Kotsonis P; Siebe J; Clement B; Schmidt HH
    Mol Pharmacol; 1999 Aug; 56(2):243-53. PubMed ID: 10419542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation.
    Hoffmann LS; Schmidt PM; Keim Y; Schaefer S; Schmidt HH; Stasch JP
    Br J Pharmacol; 2009 Jul; 157(5):781-95. PubMed ID: 19466990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The soluble guanylyl cyclase activator YC-1 increases intracellular cGMP and cAMP via independent mechanisms in INS-1E cells.
    Ramos-Espiritu LS; Hess KC; Buck J; Levin LR
    J Pharmacol Exp Ther; 2011 Sep; 338(3):925-31. PubMed ID: 21665942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional role of the soluble guanylyl cyclase alpha(1) subunit in vascular smooth muscle relaxation.
    Nimmegeers S; Sips P; Buys E; Brouckaert P; Van de Voorde J
    Cardiovasc Res; 2007 Oct; 76(1):149-59. PubMed ID: 17610859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NO-independent, haem-dependent soluble guanylate cyclase stimulators.
    Stasch JP; Hobbs AJ
    Handb Exp Pharmacol; 2009; (191):277-308. PubMed ID: 19089334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide-soluble guanylyl cyclase signaling regulates corticostriatal transmission and short-term synaptic plasticity of striatal projection neurons recorded in vivo.
    Sammut S; Threlfell S; West AR
    Neuropharmacology; 2010 Mar; 58(3):624-31. PubMed ID: 19969007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new small molecule inhibitor of soluble guanylate cyclase.
    Mota F; Gane P; Hampden-Smith K; Allerston CK; Garthwaite J; Selwood DL
    Bioorg Med Chem; 2015 Sep; 23(17):5303-10. PubMed ID: 26264842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one inhibits neurite outgrowth and causes neurite retraction in PC12 cells independently of soluble guanylyl cyclase.
    Lee HG; Kim SY; Kim du S; Seo SR; Lee SI; Shin DM; De Smet P; Seo JT
    J Neurosci Res; 2009 Jan; 87(1):269-77. PubMed ID: 18711750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and evaluation of a phosphonate analogue of the soluble guanylate cyclase activator YC-1.
    Martin NI; Derbyshire ER; Marletta MA
    Bioorg Med Chem Lett; 2007 Sep; 17(17):4938-41. PubMed ID: 17587571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [YC-1-like potentiation of nitric oxide-dependent activation of soluble guanylyl cyclase by adrenochrome].
    Severina IS; Piatakova NV; Shchegolev AIu; Sidorova TA
    Biomed Khim; 2008; 54(6):679-86. PubMed ID: 19205427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of nitric oxide and YC-1 activation of soluble guanylyl cyclase: structural implication for the YC-1 binding site?
    Lamothe M; Chang FJ; Balashova N; Shirokov R; Beuve A
    Biochemistry; 2004 Mar; 43(11):3039-48. PubMed ID: 15023055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble guanylyl cyclase activator YC-1 inhibits human neutrophil functions through a cGMP-independent but cAMP-dependent pathway.
    Hwang TL; Hung HW; Kao SH; Teng CM; Wu CC; Cheng SJ
    Mol Pharmacol; 2003 Dec; 64(6):1419-27. PubMed ID: 14645672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages.
    Hwang TL; Tang MC; Kuo LM; Chang WD; Chung PJ; Chang YW; Fang YC
    Toxicol Appl Pharmacol; 2012 Apr; 260(2):193-200. PubMed ID: 22381622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.