BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 11976937)

  • 1. Inhibition of mitochondrial function affects cellular Ca2+ handling in pancreatic B-cells.
    Düfer M; Krippeit-Drews P; Drews G
    Pflugers Arch; 2002 May; 444(1-2):236-43. PubMed ID: 11976937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Ca2+ flux is a critical determinant of the Ca2+ dependence of mast cell degranulation.
    Suzuki Y; Yoshimaru T; Inoue T; Ra C
    J Leukoc Biol; 2006 Mar; 79(3):508-18. PubMed ID: 16365155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Ca2+ activates a cation current in Aplysia bag cell neurons.
    Hickey CM; Geiger JE; Groten CJ; Magoski NS
    J Neurophysiol; 2010 Mar; 103(3):1543-56. PubMed ID: 20071622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria.
    Grimmsmann T; Rustenbeck I
    Br J Pharmacol; 1998 Mar; 123(5):781-8. PubMed ID: 9535004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methyl pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and not as a mitochondrial substrate.
    Düfer M; Krippeit-Drews P; Buntinas L; Siemen D; Drews G
    Biochem J; 2002 Dec; 368(Pt 3):817-25. PubMed ID: 12350226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local influence of mitochondrial calcium transport in retinal amacrine cells.
    Sen M; McMains E; Gleason E
    Vis Neurosci; 2007; 24(5):663-78. PubMed ID: 17697441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells.
    Krippeit-Drews P; Düfer M; Drews G
    Biochem Biophys Res Commun; 2000 Jan; 267(1):179-83. PubMed ID: 10623595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kir 2.2 inward rectifier potassium channels are inhibited by an endogenous factor in Xenopus oocytes independently from the action of a mitochondrial uncoupler.
    Collins A; Larson MK
    J Cell Physiol; 2009 Apr; 219(1):8-13. PubMed ID: 19016473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging-related changes of intracellular Ca2+ stores and contractile response of intestinal smooth muscle.
    Lopes GS; Ferreira AT; Oshiro ME; Vladimirova I; Jurkiewicz NH; Jurkiewicz A; Smaili SS
    Exp Gerontol; 2006 Jan; 41(1):55-62. PubMed ID: 16343836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bcl2 mitigates Ca2+ entry and mitochondrial Ca2+ overload through downregulation of L-type Ca2+ channels in PC12 cells.
    Díaz-Prieto N; Herrera-Peco I; de Diego AM; Ruiz-Nuño A; Gallego-Sandín S; López MG; García AG; Cano-Abad MF
    Cell Calcium; 2008 Oct; 44(4):339-52. PubMed ID: 18346784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of inward rectifier K+ channels by shift of intracellular pH dependence.
    Collins A; Larson M
    J Cell Physiol; 2005 Jan; 202(1):76-86. PubMed ID: 15389543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the endoplasmic reticulum to the glucose-induced [Ca(2+)](c) response in mouse pancreatic islets.
    Arredouani A; Henquin JC; Gilon P
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E982-91. PubMed ID: 11934662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emptying of intracellular Ca2+ stores stimulates Ca2+ entry in mouse pancreatic beta-cells by both direct and indirect mechanisms.
    Miura Y; Henquin JC; Gilon P
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):387-98. PubMed ID: 9306280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic requirement of insulin secretion distal to calcium influx.
    Rustenbeck I; Herrmann C; Grimmsmann T
    Diabetes; 1997 Aug; 46(8):1305-11. PubMed ID: 9231655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of ryanodine-operated channels in tert-butylhydroperoxide-evoked Ca2+ mobilisation in pancreatic acinar cells.
    Martínez-Burgos MA; Granados MP; González A; Rosado JA; Yago MD; Salido GM; Martínez-Victoria E; Mañas M; Pariente JA
    J Exp Biol; 2006 Jun; 209(Pt 11):2156-64. PubMed ID: 16709917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells.
    Park KS; Jo I; Pak K; Bae SW; Rhim H; Suh SH; Park J; Zhu H; So I; Kim KW
    Pflugers Arch; 2002 Jan; 443(3):344-52. PubMed ID: 11810202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone on the growth inhibition in human pulmonary adenocarcinoma Calu-6 cells.
    Han YH; Moon HJ; You BR; Kim SZ; Kim SH; Park WH
    Toxicology; 2009 Nov; 265(3):101-7. PubMed ID: 19819288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rottlerin induces calcium influx and protein degradation in cultured lenses independent of effects on protein kinase C delta.
    Xu SZ
    Basic Clin Pharmacol Toxicol; 2007 Dec; 101(6):459-64. PubMed ID: 17927688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FCCP is cardioprotective at concentrations that cause mitochondrial oxidation without detectable depolarisation.
    Brennan JP; Berry RG; Baghai M; Duchen MR; Shattock MJ
    Cardiovasc Res; 2006 Nov; 72(2):322-30. PubMed ID: 16979603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.