BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 11977094)

  • 1. The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion.
    Tam LW; Lefebvre PA
    Cell Motil Cytoskeleton; 2002 Apr; 51(4):197-212. PubMed ID: 11977094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement.
    Baron DM; Kabututu ZP; Hill KL
    J Cell Sci; 2007 May; 120(Pt 9):1513-20. PubMed ID: 17405810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion.
    Fujiu K; Nakayama Y; Yanagisawa A; Sokabe M; Yoshimura K
    Curr Biol; 2009 Jan; 19(2):133-9. PubMed ID: 19167228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella.
    Baron DM; Ralston KS; Kabututu ZP; Hill KL
    J Cell Sci; 2007 Feb; 120(Pt 3):478-91. PubMed ID: 17227795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella.
    Meng D; Cao M; Oda T; Pan J
    J Cell Sci; 2014 Jan; 127(Pt 2):281-7. PubMed ID: 24259666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii.
    McCord RP; Yukich JN; Bernd KK
    Cell Motil Cytoskeleton; 2005 Jul; 61(3):137-44. PubMed ID: 15887297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two flagellar genes, AGG2 and AGG3, mediate orientation to light in Chlamydomonas.
    Iomini C; Li L; Mo W; Dutcher SK; Piperno G
    Curr Biol; 2006 Jun; 16(11):1147-53. PubMed ID: 16753570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the function of inner and outer dynein arms with Chlamydomonas mutants.
    Kamiya R
    Cell Motil Cytoskeleton; 1995; 32(2):98-102. PubMed ID: 8681402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of Chlamydomonas p60 katanin and localization to the site of outer doublet severing during deflagellation.
    Lohret TA; Zhao L; Quarmby LM
    Cell Motil Cytoskeleton; 1999; 43(3):221-31. PubMed ID: 10401578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Parkin co-regulated gene product, PACRG, is an evolutionarily conserved axonemal protein that functions in outer-doublet microtubule morphogenesis.
    Dawe HR; Farr H; Portman N; Shaw MK; Gull K
    J Cell Sci; 2005 Dec; 118(Pt 23):5421-30. PubMed ID: 16278296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly.
    Ahmed NT; Mitchell DR
    Mol Biol Cell; 2005 Oct; 16(10):5004-12. PubMed ID: 16093345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protofilament ribbon compartments of ciliary and flagellar microtubules.
    Linck RW; Norrander JM
    Protist; 2003 Oct; 154(3-4):299-311. PubMed ID: 14658491
    [No Abstract]   [Full Text] [Related]  

  • 13. Orientation of the central pair complex during flagellar bend formation in Chlamydomonas.
    Mitchell DR
    Cell Motil Cytoskeleton; 2003 Oct; 56(2):120-9. PubMed ID: 14506709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and structure of a new coiled coil protein from a microtubule bundle in Giardia.
    Marshall J; Holberton DV
    J Mol Biol; 1993 May; 231(2):521-30. PubMed ID: 8510163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules.
    Wargo MJ; McPeek MA; Smith EF
    J Cell Sci; 2004 May; 117(Pt 12):2533-44. PubMed ID: 15128866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonemal protofilament ribbons, DM10 domains, and the link to juvenile myoclonic epilepsy.
    King SM
    Cell Motil Cytoskeleton; 2006 May; 63(5):245-53. PubMed ID: 16572395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarity of flagellar assembly in Chlamydomonas.
    Johnson KA; Rosenbaum JL
    J Cell Biol; 1992 Dec; 119(6):1605-11. PubMed ID: 1281816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+-dependent waveform conversion in the flagellar axoneme of Chlamydomonas mutants lacking the central-pair/radial spoke system.
    Wakabayashi K; Yagi T; Kamiya R
    Cell Motil Cytoskeleton; 1997; 38(1):22-8. PubMed ID: 9295138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural comparison of tektins and evidence for their determination of complex spacings in flagellar microtubules.
    Norrander JM; Perrone CA; Amos LA; Linck RW
    J Mol Biol; 1996 Mar; 257(2):385-97. PubMed ID: 8609631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility.
    Rupp G; O'Toole E; Porter ME
    Mol Biol Cell; 2001 Mar; 12(3):739-51. PubMed ID: 11251084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.