These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 3: Depletion of antioxidant defenses. Gazzano E; Riganti C; Tomatis M; Turci F; Bosia A; Fubini B; Ghigo D J Toxicol Environ Health A; 2005 Jan; 68(1):41-9. PubMed ID: 15739803 [TBL] [Abstract][Full Text] [Related]
3. Long and short fiber amosite asbestos alters at a different extent the redox metabolism in human lung epithelial cells. Riganti C; Aldieri E; Bergandi L; Tomatis M; Fenoglio I; Costamagna C; Fubini B; Bosia A; Ghigo D Toxicol Appl Pharmacol; 2003 Nov; 193(1):106-15. PubMed ID: 14613721 [TBL] [Abstract][Full Text] [Related]
4. Quartz inhibits glucose 6-phosphate dehydrogenase in murine alveolar macrophages. Polimeni M; Gazzano E; Ghiazza M; Fenoglio I; Bosia A; Fubini B; Ghigo D Chem Res Toxicol; 2008 Apr; 21(4):888-94. PubMed ID: 18370412 [TBL] [Abstract][Full Text] [Related]
5. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro. Hiranruengchok R; Harris C Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290 [TBL] [Abstract][Full Text] [Related]
6. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver. Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600 [TBL] [Abstract][Full Text] [Related]
7. Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes. García-Nogales P; Almeida A; Fernández E; Medina JM; Bolaños JP J Neurochem; 1999 Apr; 72(4):1750-8. PubMed ID: 10098886 [TBL] [Abstract][Full Text] [Related]
8. Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway. Almeida AS; Soares NL; Sequeira CO; Pereira SA; Sonnewald U; Vieira HLA Redox Biol; 2018 Jul; 17():338-347. PubMed ID: 29793167 [TBL] [Abstract][Full Text] [Related]
9. Regulation of nitric oxide synthase induction by iron and glutathione in asbestos-treated human lung epithelial cells. Park SH; Aust AE Arch Biochem Biophys; 1998 Dec; 360(1):47-52. PubMed ID: 9826428 [TBL] [Abstract][Full Text] [Related]
10. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. Iizumi T; Takahashi S; Mashima K; Minami K; Izawa Y; Abe T; Hishiki T; Suematsu M; Kajimura M; Suzuki N J Neuroinflammation; 2016 May; 13(1):99. PubMed ID: 27143001 [TBL] [Abstract][Full Text] [Related]
11. Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Peiró C; Romacho T; Azcutia V; Villalobos L; Fernández E; Bolaños JP; Moncada S; Sánchez-Ferrer CF Cardiovasc Diabetol; 2016 Jun; 15():82. PubMed ID: 27245224 [TBL] [Abstract][Full Text] [Related]
12. Fluoride-containing bioactive glasses inhibit pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human osteoblasts. Bergandi L; Aina V; Garetto S; Malavasi G; Aldieri E; Laurenti E; Matera L; Morterra C; Ghigo D Chem Biol Interact; 2010 Feb; 183(3):405-15. PubMed ID: 19945446 [TBL] [Abstract][Full Text] [Related]
13. Apoptosis induced by crocidolite asbestos in human lung epithelial cells involves inactivation of Akt and MAPK pathways. Baldys A; Pande P; Mosleh T; Park SH; Aust AE Apoptosis; 2007 Feb; 12(2):433-47. PubMed ID: 17191120 [TBL] [Abstract][Full Text] [Related]
14. Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. Tang BL J Cell Biochem; 2019 Sep; 120(9):14285-14295. PubMed ID: 31127649 [TBL] [Abstract][Full Text] [Related]
15. Efflux of reduced glutathione after exposure of human lung epithelial cells to crocidolite asbestos. Golladay SA; Park SH; Aust AE Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1273-7. PubMed ID: 9400737 [TBL] [Abstract][Full Text] [Related]
16. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Gupte RS; Floyd BC; Kozicky M; George S; Ungvari ZI; Neito V; Wolin MS; Gupte SA Free Radic Biol Med; 2009 Aug; 47(3):219-28. PubMed ID: 19230846 [TBL] [Abstract][Full Text] [Related]
17. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems. Barcia-Vieitez R; Ramos-Martínez JI IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203 [TBL] [Abstract][Full Text] [Related]
18. Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. Riganti C; Gazzano E; Polimeni M; Costamagna C; Bosia A; Ghigo D J Biol Chem; 2004 Nov; 279(46):47726-31. PubMed ID: 15358777 [TBL] [Abstract][Full Text] [Related]
19. Glutathione Depletion, Pentose Phosphate Pathway Activation, and Hemolysis in Erythrocytes Protecting Cancer Cells from Vitamin C-induced Oxidative Stress. Zhang ZZ; Lee EE; Sudderth J; Yue Y; Zia A; Glass D; Deberardinis RJ; Wang RC J Biol Chem; 2016 Oct; 291(44):22861-22867. PubMed ID: 27660392 [TBL] [Abstract][Full Text] [Related]
20. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion. Yamamoto Y; Hosoda K; Imahori T; Tanaka J; Matsuo K; Nakai T; Irino Y; Shinohara M; Sato N; Sasayama T; Tanaka K; Nagashima H; Kohta M; Kohmura E Brain Res; 2018 May; 1687():82-94. PubMed ID: 29510140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]