BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 11978496)

  • 1. Crocidolite asbestos inhibits pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human lung epithelial cells.
    Riganti C; Aldieri E; Bergandi L; Fenoglio I; Costamagna C; Fubini B; Bosia A; Ghigo D
    Free Radic Biol Med; 2002 May; 32(9):938-49. PubMed ID: 11978496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 3: Depletion of antioxidant defenses.
    Gazzano E; Riganti C; Tomatis M; Turci F; Bosia A; Fubini B; Ghigo D
    J Toxicol Environ Health A; 2005 Jan; 68(1):41-9. PubMed ID: 15739803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long and short fiber amosite asbestos alters at a different extent the redox metabolism in human lung epithelial cells.
    Riganti C; Aldieri E; Bergandi L; Tomatis M; Fenoglio I; Costamagna C; Fubini B; Bosia A; Ghigo D
    Toxicol Appl Pharmacol; 2003 Nov; 193(1):106-15. PubMed ID: 14613721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quartz inhibits glucose 6-phosphate dehydrogenase in murine alveolar macrophages.
    Polimeni M; Gazzano E; Ghiazza M; Fenoglio I; Bosia A; Fubini B; Ghigo D
    Chem Res Toxicol; 2008 Apr; 21(4):888-94. PubMed ID: 18370412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes.
    García-Nogales P; Almeida A; Fernández E; Medina JM; Bolaños JP
    J Neurochem; 1999 Apr; 72(4):1750-8. PubMed ID: 10098886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway.
    Almeida AS; Soares NL; Sequeira CO; Pereira SA; Sonnewald U; Vieira HLA
    Redox Biol; 2018 Jul; 17():338-347. PubMed ID: 29793167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of nitric oxide synthase induction by iron and glutathione in asbestos-treated human lung epithelial cells.
    Park SH; Aust AE
    Arch Biochem Biophys; 1998 Dec; 360(1):47-52. PubMed ID: 9826428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system.
    Iizumi T; Takahashi S; Mashima K; Minami K; Izawa Y; Abe T; Hishiki T; Suematsu M; Kajimura M; Suzuki N
    J Neuroinflammation; 2016 May; 13(1):99. PubMed ID: 27143001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway.
    Peiró C; Romacho T; Azcutia V; Villalobos L; Fernández E; Bolaños JP; Moncada S; Sánchez-Ferrer CF
    Cardiovasc Diabetol; 2016 Jun; 15():82. PubMed ID: 27245224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluoride-containing bioactive glasses inhibit pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human osteoblasts.
    Bergandi L; Aina V; Garetto S; Malavasi G; Aldieri E; Laurenti E; Matera L; Morterra C; Ghigo D
    Chem Biol Interact; 2010 Feb; 183(3):405-15. PubMed ID: 19945446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoptosis induced by crocidolite asbestos in human lung epithelial cells involves inactivation of Akt and MAPK pathways.
    Baldys A; Pande P; Mosleh T; Park SH; Aust AE
    Apoptosis; 2007 Feb; 12(2):433-47. PubMed ID: 17191120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway.
    Tang BL
    J Cell Biochem; 2019 Sep; 120(9):14285-14295. PubMed ID: 31127649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efflux of reduced glutathione after exposure of human lung epithelial cells to crocidolite asbestos.
    Golladay SA; Park SH; Aust AE
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1273-7. PubMed ID: 9400737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver.
    Gupte RS; Floyd BC; Kozicky M; George S; Ungvari ZI; Neito V; Wolin MS; Gupte SA
    Free Radic Biol Med; 2009 Aug; 47(3):219-28. PubMed ID: 19230846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.
    Barcia-Vieitez R; Ramos-Martínez JI
    IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress.
    Riganti C; Gazzano E; Polimeni M; Costamagna C; Bosia A; Ghigo D
    J Biol Chem; 2004 Nov; 279(46):47726-31. PubMed ID: 15358777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione Depletion, Pentose Phosphate Pathway Activation, and Hemolysis in Erythrocytes Protecting Cancer Cells from Vitamin C-induced Oxidative Stress.
    Zhang ZZ; Lee EE; Sudderth J; Yue Y; Zia A; Glass D; Deberardinis RJ; Wang RC
    J Biol Chem; 2016 Oct; 291(44):22861-22867. PubMed ID: 27660392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion.
    Yamamoto Y; Hosoda K; Imahori T; Tanaka J; Matsuo K; Nakai T; Irino Y; Shinohara M; Sato N; Sasayama T; Tanaka K; Nagashima H; Kohta M; Kohmura E
    Brain Res; 2018 May; 1687():82-94. PubMed ID: 29510140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.