BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 11978828)

  • 1. Muscle spindle-derived neurotrophin 3 regulates synaptic connectivity between muscle sensory and motor neurons.
    Chen HH; Tourtellotte WG; Frank E
    J Neurosci; 2002 May; 22(9):3512-9. PubMed ID: 11978828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3.
    Tourtellotte WG; Milbrandt J
    Nat Genet; 1998 Sep; 20(1):87-91. PubMed ID: 9731539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotrophin-3 ameliorates sensory-motor deficits in Er81-deficient mice.
    Li LY; Wang Z; Sedý J; Quazi R; Walro JM; Frank E; Kucera J
    Dev Dyn; 2006 Nov; 235(11):3039-50. PubMed ID: 17013886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents.
    Patel TD; Kramer I; Kucera J; Niederkofler V; Jessell TM; Arber S; Snider WD
    Neuron; 2003 May; 38(3):403-16. PubMed ID: 12741988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis.
    Tourtellotte WG; Keller-Peck C; Milbrandt J; Kucera J
    Dev Biol; 2001 Apr; 232(2):388-99. PubMed ID: 11401400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons.
    Levanon D; Bettoun D; Harris-Cerruti C; Woolf E; Negreanu V; Eilam R; Bernstein Y; Goldenberg D; Xiao C; Fliegauf M; Kremer E; Otto F; Brenner O; Lev-Tov A; Groner Y
    EMBO J; 2002 Jul; 21(13):3454-63. PubMed ID: 12093746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of muscle spindles in the development of the monosynaptic stretch reflex.
    Wang Z; Li L; Frank E
    J Neurophysiol; 2012 Jul; 108(1):83-90. PubMed ID: 22490553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for neuregulin1 signaling in muscle spindle differentiation.
    Hippenmeyer S; Shneider NA; Birchmeier C; Burden SJ; Jessell TM; Arber S
    Neuron; 2002 Dec; 36(6):1035-49. PubMed ID: 12495620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived neurotrophin 3.
    Shneider NA; Mentis GZ; Schustak J; O'Donovan MJ
    J Neurosci; 2009 Apr; 29(15):4719-35. PubMed ID: 19369542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of fusimotor innervation correlates with group Ia afferents but is independent of neurotrophin-3.
    Ringstedt T; Copray S; Walro J; Kucera J
    Brain Res Dev Brain Res; 1998 Dec; 111(2):295-300. PubMed ID: 9838169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.
    Oliveira Fernandes M; Tourtellotte WG
    J Neurosci; 2015 Apr; 35(14):5566-78. PubMed ID: 25855173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms regulating the specificity and strength of muscle afferent inputs in the spinal cord.
    Mentis GZ; Alvarez FJ; Shneider NA; Siembab VC; O'Donovan MJ
    Ann N Y Acad Sci; 2010 Jun; 1198():220-30. PubMed ID: 20536937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survival.
    Carlsten JA; Kothary R; Wright DE
    J Comp Neurol; 2001 Apr; 432(2):155-68. PubMed ID: 11241383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of supernumerary muscle spindles at the expense of Golgi tendon organs in ER81-deficient mice.
    Kucera J; Cooney W; Que A; Szeder V; Stancz-Szeder H; Walro J
    Dev Dyn; 2002 Mar; 223(3):389-401. PubMed ID: 11891988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.
    Siembab VC; Gomez-Perez L; Rotterman TM; Shneider NA; Alvarez FJ
    J Comp Neurol; 2016 Jun; 524(9):1892-919. PubMed ID: 26660356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons.
    Arber S; Ladle DR; Lin JH; Frank E; Jessell TM
    Cell; 2000 May; 101(5):485-98. PubMed ID: 10850491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle sensory neurons require neurotrophin-3 from peripheral tissues during the period of normal cell death.
    Oakley RA; Garner AS; Large TH; Frank E
    Development; 1995 May; 121(5):1341-50. PubMed ID: 7789265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the monosynaptic stretch reflex circuit.
    Chen HH; Hippenmeyer S; Arber S; Frank E
    Curr Opin Neurobiol; 2003 Feb; 13(1):96-102. PubMed ID: 12593987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of developing group Ia afferents on neurotrophin-3.
    Kucera J; Fan G; Jaenisch R; Linnarsson S; Ernfors P
    J Comp Neurol; 1995 Dec; 363(2):307-20. PubMed ID: 8642077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prenatal exposure to elevated NT3 disrupts synaptic selectivity in the spinal cord.
    Wang Z; Li LY; Taylor MD; Wright DE; Frank E
    J Neurosci; 2007 Apr; 27(14):3686-94. PubMed ID: 17409232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.